I

Larry Ruzzo
Spring 2001

Slides by Chambers, Eggers, Notkin, Ruzzo, and others
©W.L. Ruzzo and UW CSE, 1994-2001

! CSE401: Code Generation

Prototype compiler structure

Target code generation

Intermediate
code
generation

Lexical analysis

Syntactic analysis

Semantic analysis

Storage
layout

= Can optimize intermediate code in place

of registers, kinds of instruction formats)

across target machines
= Intermediate code is simple and explicit

intermediate code

= |ntermediate code generation

= Purpose: translate ASTs into linear sequence of
simple statements called intermediate code

= A later pass translates intermediate code into target code
= Intermediate code is machine-independent
= Don't worry about details of the target machine (e.g., number

= Intermediate code generator and optimizer are portable

= Decomposes code generation problem into simpler pieces
= Constructs implicit in the AST become explicit in the

= Our PL/O compiler merges intermediate
and target code generation for simplicity
of coding

a simple intermediate language

& Three-address code:

operation in its right-hand side

needed
(conditional) branch statements

made explicit

= Each statement has at most one
= Introduce extra temporary variables if
= Control structures are broken down into

= Pointer and address calculations are

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001

A tli=y*z
t2:=qlr
X=tl+12
. =0
e fori:=0to10do ... : :Qop:
end if i < 10 goto done;
=i+l
goto loop;
done:
- o tli=i*4
e x=aff X =*a+ 1)

=a Available operations

. const ant

. var

. unop var

] var binop var
] proc(var, ...)
= var:=&var

= var :=*(var + constant)
.

.

.

.

.

.

*(var + constant) := var
if var goto label

goto label

label:

return var

return

ICG (Intermediate code

i generation) from ASTs

= Once again (like type checking), we’ll do
a tree traversal
= Cases
= expressions
= assignment statements
= control statements
= declarations are already done

i ICG for expressions

= How: tree walk, bottom-up, left-right,
(largely postorder) assigning a new
temporary for each result

= Pseudo-code

Nane | ntegerlLiteral::codegen(STS* s) {

Temps: result := new Nane;
just emt(result := _value);

suppose return result;
we had }

infinitely
many

registers

Another pseudo-example

codegen(SynTabScope* s) {

= |CG for variable references

= TWO cases
= if we want I-value, compute address

= if we want r-value, load value at that
address

1

Nane el = _|eft->codegen(s);

Nane e2 = _right->codegen(s);

result = new Nane;

emt(result := el _op e2);

return result;
}

10

r-value

codegen(SynirabScope* s) {

int offset;

Name base = codegen_address(s, offset);
Nane dest = new Nane;

enmt(dest := (base + offset));

return dest;

Nane Var Ref:: codegen(SynirabScope* s) {
STE* ste = s->| ookup(_i dent, f oundScope) ;
if (ste->i sConstant()) {
Nanme dest = new Nane;
emt(dest := ste->value());
return dest;

}

return Lval ue:: codegen(s);

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001

I-value

Nane Var Ref:: codegen_address(STS* s, int& offset)
{
STE* ste = s->| ookup(_i dent, f oundScope) ;
if (!ste->isvariable()) {
/'l fatal error

}
Name base = s->get FPOf (f oundScope);
offset = ste->offset(); ——

/'l base + offset = address of variable
return base;

} returning two things

13

Compute address of frame
containing variable

Nanme SyniTabScope: : get FPO (f oundScope) {

Nane curFranme = FP,

SyniTabScope* curscope = this;

whi l e (curScope ! = foundScope) {
Name newFrane = new Nane; // load static |link
int offset = curScope->staticLinkCffset();
em t(newFrame : = *(curFrame + offset));
cur Scope = cur Scope->parent () ;
cur Frame = newFrane;

}

return curFraneg;

}

_ICG for assignments

AssignStnt: : codegen(SynTabScope* s) {

int offset;

Name base = _|val ue->codegen_addr (s, of f set);
Name result = _expr->codegen(s);

emt(*(base + offset) := result);

15

ICG for function calls

Name FunCal | : : codegen(SyniTabScope* s) {
forall argunents, fromright to left {
if (arg is byVvalue) {
Name nane = arg->codegen(s);
em t (push nane);
} else {
int offset;
Name base = arg->codegen_addr (s, of fset);
Nane ptr = new Nane;
emt(ptr := base + offset);
em t(push ptr);

...continued

16

__ ICG for function calls, con'’t

s->| ookup(_i dent, foundScope) ;
Narme |ink = s->get FPOf (foundScope);
em t(push link); /1 call ee’s static link

emit(call _ident)

Name result = new Name;
emit(result := RETO);
return result;

17

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001

Accessing call-by-ref params

= Formal parameter is address of actual, not
the value, so we need an extra load
statement

= Name VarRef::codegen_address(STS* s, inté& of fset){
ste = s->| ookup(_i dent, f oundScope) ;
Name base = s->get FPOf (f oundScope) ;
of fset = ste->offset();
if (ste->i sFormal ByRef()) {
Nane ptr = new Nane;
emt(ptr := *(base + offset));
offset = 0O;
return ptr;

return base;

é ICG for array accesses

m AST:
array_expr[index_expr]
= Code generated:
a_base := <addr of array_expr>
i 1= <value of index_expr>
elemoffset :=1i * <size of elenent type>
el em addr 1= a_base + elemoffset

= 2D Arrays? Not really: [

var MyArray array[10] of P
array[5] of int; [1

M/Ar T ay [il; Iy

i

é ICG for if statement

void IfStnt::codegen(SynTabScope* s) {
Name t = _test->codegen(s);
Label else_lab = new Label;
emt(if t = 0 goto el se_lab);
_then_stnts->codegen(s);
Label done_lab = new Label;
enit(goto done_| ab);
enmt(else_lab:);
_el se_stnts->codegen(s);
enit(done_l ab:);

ICG for while statement

21

ICG for break statement

Short-circuiting

= How to support short-circuit evaluation
of and and or ?

= Example
«if x<>0and y / x > 5 then
b:=y <x
end;

= Treat as control structure, not operator

23

Prototype compiler structure

Lexical analysis

Target Code
Generation

Syntactic analysis Optimization

3 . Intermediate code
Semantic analysis generation

Storage
layout 24

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001

i Target Qode Generation

= Input: intermediate representations (IR)
= Ex: three-address code
= Output: target language program
= Absolute binary code
= Relocatable binary code
= Assembly code
« C

25

i Task of code generator

= Bridge the gap between intermediate code
and target code
= Intermediate code: machine independent
= Target code: machine dependent

= Two jobs

= Instruction selection:
for each IR instruction (or sequence), select
target language instruction (or sequence)

= Register allocation: for each IR variable, select
target language register/stack location

Instruction selection

= Given one or more IR instructions, pick
the “best” sequence of target machine
instructions with the same semantics
= “best” = fastest, shortest

= Correctness is a big issue, especially if
the code generator (codegen) is
complex

27

Difficulty depends on
i instruction set

= RISC: easy
= Usually only one way to do something
= Closely resembles IR instructions

= CISC: hard

= Lots of alternative instructions with similar
semantics

= Lots of tradeoffs among speed, size

= Simple RISC-like translation may be inefficient
= C: easy, as long as C is appropriate for

desired semantics

= Can leave optimizations to the C compiler

= IR code = Note thata
= t3 :=tl1 +1t2 single IR

= Target code for MIPS instruction may
= add $3, $1, $2 expand to

= Target code for SPARC several target
« add %, %R, %8 instructions

= Target code for 68k
= nov.| di,d3
add.| d2,d3

29

i Example

= IR code = Can have
atl:=tl+1 choices

= Target code for MIPS = This is a pain,
= add $1,81,1 since choices

= Target code for SPARC imply you must
= add %, 1, % make decisions

= Target code for 68k

= add.| #1,d1 or
= inc.l di

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001

= IR code (push x onto stack) = Note that
wsp:i=sp-4
Ha several IR

instructions may

= Target code for MIPS .
combine to a

= sub $sp,$sp,4

sw $1,0($sp) single target
= Target code for SPARC instruction
" e Hed] = This is hard!

= Target code for 68k
= mov.l di1,-(sp)

31

=g |nstruction selection in PL/0

= Very simple instruction selection
= As part of generating code for an AST node
= Merged with intermediate code generation,
because it’s so simple
= Interface to target machine: assenbl er class
= Function for each kind of target instruction
= Hides details of assembly format, etc.

= Two assembler classes (MIPS and x86), but you
only need to extend MIPS

i Resource constraints

= Intermediate language uses unlimited
temporary variables
= This makes intermediate code generation easy
= Target machine, however, has fixed
resources for representing “locals”

= MIPS, SPARC: 31 registers minus SP, FP,
RetAddr, Argl-4, ...

= 68k: 16 registers, divided into data and address
registers

= X86: 4(?) general-purpose registers, plus several
special-purpose registers

33

wa Register allocation

= Using registers is

= Necessary: in load/store RISC machines

= Desirable: since much faster than memory
= SO...
Should try to keep values in registers if possible
Must reuse registers for many temp variables, so
we must free registers when no longer needed
Must be able to handle out-of-registers condition,
so we must spill some variables to stack locations
Interacts with instructions selection, which is a
pain, especially on CISCs

Classes of registers

= What registers can the allocator use?
= Fixed/dedicated registers
= SP, FP, return address, ...

= Claimed by machine architecture, calling convention, or
internal convention for special purpose

= Not easily available for storing locals
= Scratch registers
= A couple of registers are kept around for temp values
= E.g., loading a spilled value from memory to operate upon it
= Allocatable registers

= Remaining registers are free for the allocator to allocate
(PL/O on MIPS: $8-$25)

35

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001

=g Which variables go in registers?

= Temporary variables: easy to allocate
= Defined and used exactly once, during expression eval hv]
= So the allocator can free the register after use easily (g
= Usually not too many in use at one time
= So less likely to run out of registers

J

= Local variables: hard, but doable
= Need to determine last use of variable to free register
= Can easily run out of registers, so need to make decisions
= What about load/store to a local through a pointer?
= What about the debugger?
= Global variables?

= Really hard, but doable as a research project?

ww PL/O’s simple allocator design

= Keep set of allocated registers as codegen
proceeds
= Regi st er Bank class
= During codegen, allocate one from the set
= Reg reg = rb->get New() ;
= Side-effects register bank to note that r eg is taken
= What if no registers are available?
= When done with a register, release it
= Rb->free(reg);
= Side-effects register bank to note thatr eg is free

37

= Connection to ICG

= In the last lecture, the pseudo-code
often create a new Nane

= Since PL/0 merges intermediate code
generation (ICG) with target generation,
these new Names are equivalent to
allocating registers in PL/O

i Example

Name | ntegerLiteral::codegen(SyniTabScope* s) {

result := new Nane;
8 emt(result := _value);
= return result;

}

Vs

Reg IntegerLiteral::
(codegen(SynTabScope* s, Regi sterBank* rb) {
IS4 Reg r = rb->newReg();
i 1 TheAssenbl er - >novel medi ate(r, _val ue);
return r;
}

39

= Codegen for assignments

Assi gnStnt : : codegen(SynTabScope* s) {

= Codegen for if statements

void IfStnt::codegen(SynTabScope* s, RegBank* rb){

Reg test = _test->codegen(s, rb);

char* el seLabel = TheAssenbl er->newLabel ();
TheAssenbl er - >branchFal se(test, el selLabel);
rb->freeReg(test);

PL/O

for (int i=0; i < _then_stnts->length(); i++) {
_then_stnts->fetch(i)->codegen(s, rb);

}

TheAssenbl er- >i nsert Label (el seLabel);

41

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001

int offset;
O] Name base = _| val ue- >codegen_addr (s, of fset);
o Name result = _expr->codegen(s);
emt(*(base + offset) :=result);
}
vs
voi d AssignStnt::codegen(SynTabScope* s, RegBank* rb) {
int offset;
Reg base = _| val ue- >codegen_address(s, rb, offset);
3 Reg result = _expr->codegen(s, rb);
o TheAssenbl er->store(result, base, offset);
rb->freeReg(base);
rb->freeReg(result);
) w
Codegen for call statements
void Call Stnt::codegen(SynTabScope* s, RegBank* rb) {
for (int i = _args->length() - 1; i >=0; i--) {
Reg areg = _args->fetch(i)->codegen(s, rb);
TheAssenbl er - >push(ar eg) ; r b- >f r eeReg(areg) ;
)SymTabScope* encl Scope;
SynTabEntry* ste = s->| ookup(_i dent, encl Scope);
S Reg staticLink = s->get FPCf (encl Scope, rb);
i TheAssenbl er - >push(st ati cLi nk) ;

rb->freeReg(staticLink);

rb- >saveRegs(s);

TheAssenbl er - >cal | (_i dent);

rb->restoreRegs(s);

TheAssenbl er - >popMul ti pl e((_args->length() + 1) *
TheAssenbl er - >wor dSi ze()) ;

42

Another example

Name Bi nOp: : codegen(SynirabScope* s) {
Name el = _left->codegen(s);
Name e2 = _right->codegen(s);
result = new Nane;
emt(result := el _op e2);
return result;

}

ICG

Reg exprl = _left->codegen(s, rb);
Reg expr2 = _right->codegen(s, rb);
rb->freeReg(expril);

rb->f reeReg(expr2);

Reg dest = rb->newReg();

TheAssenbl er - >bi nop(_op, dest, exprl,
return dest;

PL/O

[Reg BinQp::codegen(SyniTabScope* s, RegBank* rb) {

expr2);

43

add

sw

$8, 0($fp)

$9, 2

$10, 0($fp)
$11,1

$12, $10, $11
$10, $9, $12
$9, $8, $10
$9, 0($fp)

@
[Pe
= Example, con’t
w $8, 0($fp) CT T T T 177
i $9,2 I I O O
w $10, 0($fp) I I I I
l $11,1 [
sub $10, $10, $11 CT T T 1T
mul $9, $9, $10 [
add $8, $8, $9 [
sw $8, 0($fp) I I O O

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001

