i Today’s objectives
CSEA401: Introduction to . »
= Define compilers and why we study them

q Compiler Construction = Define the high-level structure of compilers

T = Associate specific tasks, theories, and
technologies with achieving the different

Larry Ruzzo structural elements of a compiler
i = And build some initial intuition about why these
Sprlng 2001 are needed
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What is a compiler? Examples

= Source languages = Target architectures

: - = Java = MIPS
‘ :}’Trmeru:: .C . x86

N - . CH+ = SPARC

Source Code Executable Code » LISP « Alpha
= A software tool that translates . ML .

= a program in source code form to

= an equivalent program in an executable (target) form = COBOL = C
= Converts from a form good for people to a form good LI

for computers

3 4
1
CSE401'’s
= Why study compilers? i project-oriented approach

= Start with a compiler for PL/O, written in C++

= We define additional language features
= Such as comments, arrays, call-by-reference
parameters, result-returning procedures, for loops,
etc.
= You modify the compiler to translate the
extended PL/0 language
= Project completed in well-defined stages
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+a More on the project

= Strongly = Provides experience
recommended that with object-oriented

you work in two- design and with C++
person teams for the ) .
= Provides experience

quarter ' ¢
Grading based on with working on a

wg What's hard about compiling

= | will present a small program to you,
character by character

= |dentify problems that you can see that you
will encounter in compiling this program

= Here’'s an example problem
= When we see a character '1’ followed by a

character "7’ , we have to convert it to the integer
17.

m
= correctness teal
= clarity of design and
implementation
= quality of testing
7
1o 1 21 i
2. n w2 7 2. * . isthe
3.t 13. 23 1 space
. character
4. 14. 24. +
5 5. P . 2 « This is not a
6 6 T 2. ) PL/O
7. 17. 1 27. program!
s | 18. N
9. 10. t
0. = 20 (

Structure of compilers

= A common compiler structure has been
defined
= Years and years of deep, difficult research
intermixed with building of thousands of compilers
= Actual compilers often differ from this
prototype
= Primary differences are the ordering and clarity
with which the pieces are actually separated
= But the model is still extremely useful
= You will see the structure — to a large degree
— in the PL/O compiler
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Prototype compiler structure

Lexical analysis Code generation
Syntactic analysis Optimization
. ) Intermediate code
Semantic analysis generation

Storage
layout

= These parts are often lumped into two
categories
= The front-end
= Focuses on (repeated) analysis
= Determines what the program is
= The back-end
= Focuses on synthesis

= Produces target program equivalent to source
program
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An example compilation

rodul e mai n; i = Areal PL/O program
var x:int, result: int; ;
procedure square(n:int); = We'll step through
begi n = Lexical analysis

result = n*n; = Syntactic analysis
end square; N .
begi n = Semantic analysis
X = input; = Storage layout
while x <> 0 do = Code generation
square(x);
output := result;
X = input;
end;
end nmain.
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Lexical analysis

(AKA scanning and tokenizing)

= Read in characters and | dent - Letter AlphaNunt
clump them into tokens - P
= Also strip out white ! nt eger Dot
space and comments A phaNum : Letter | Digit
. . Letts w=ral..z]...
= Specify tokens with etier al lz,ﬁl\,l ! |z
regulgrlexpressmns Digit =09
= Use finite state

machines to scan

= Remember the Eg.
connection between \Wnl [x[<>10 [do ]
regular expressions LLE[X - 0
and finite state keywd id op it keywd
machines

Syntactic analysis
(AKA parsing)

= Turn token stream into tree stnt
based on the program’s
syntactic structure

= Define syntax using context

if Test then Stmt

el se Stmt]
free grammar (CFG) o [ _ ]
) ) Test ::= Expr = Expr|
. ngNF isa comr;‘non n;)tatlon for Expr < Expr|...
e(ljmng csnctre e ;ynlax Expr :=Term + Term |
= Cares about semi-colons,
parens, and such Term ::= ;:[:To; Ie::;ncl O:'EV "
= Parser usually constructs AST T Factor l
representing abstract syntax -
Factor ::= - Factor | Id |

= Cares about statement

structures, precedence and such Int | ( Expr )
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Syntactic analysis example

value 1= Expr ;

if Test then Stmt
[el se Stmf] ;
Test ::= Expr = Expr|

Expr < Expr| ...
Expr :=Term + Term|

Term — Term | Term
Term ::= Factor * Factor |
... | Factor

I
[1d] El &l Factor ::= - Factor | Id

result:= n * n; Int | ( Expr )

Lval ue

Semantic analysis

(Name resolution and type checking)

= Given AST
= figure out what declaration each name refers to
= perform static consistency checks
= Key data structure: symbol table
= maps names to information about name derived from
declaration
= Semantic analysis steps
Process each scope, top down

Process declarations in each scope into symbol table for
scope
Process body of each scope in context of symbol table
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Storage layout

= Given symbol table, determine how and where
variables will be stored at runtime
= What representation is used for each kind of data?
= How much space does each variable require?
= In what kind of memory should it be placed?
= static, global memory
= stack memory
= heap memory
= Where in memory should it be placed?
= e.g., what stack offset?
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= CoOde generation

= Given annotated AST and symbol table,
produce target code
= Often done as three steps
= Produce machine-independent low-level
representation of the program
(intermediate representation or IR)
= Perform machine-independent optimizations
(optional)
= Translate IR into machine-specific target
instructions
= Instruction selection

= Register allocation
19

Does this structure work well?

= FORTRAN | Compiler (circa 1954-56)
= 18 person years

= PL/0O Compiler
= By the end of the quarter, you'll have a
working compiler that's way better than
FORTRAN | in most respects
(key exception: optimization)

= Compilers vs. interpreters

= Compilers implement languages by
translation
= Interpreters implement languages directly
= Note: the line is not always crystal-clear
= Compilers and interpreters have tradeoffs
= Execution speed of program
= Start-up overhead, turn-around time
= Ease of implementation
= Programming environment facilities
= Conceptual clarity
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= CoOmpiler engineering issues

= Portability

= Ideal is multiple front-ends and multiple back-ends
with a shared intermediate language

= Sequencing phases of compilation
= Stream-based vs. syntax-directed

= Multiple, separate passes vs. fewer,
integrated passes

= How to avoid compiler bugs?

Objectives: next lecture

= Define overall theory and practical structure
of lexical analysis

= Briefly recap regular expressions, finite state
machines, and their relationship
= Even briefer recap of the language hierarchy

= Show how to define tokens with regular
expressions

= Show how to leverage this style of token
definition in implementing a lexer
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