i Today’s objectives
CSEA401: Introduction to . »
= Define compilers and why we study them

q Compiler Construction = Define the high-level structure of compilers

T = Associate specific tasks, theories, and
technologies with achieving the different

Larry Ruzzo structural elements of a compiler
i = And build some initial intuition about why these
Sprlng 2001 are needed

Slides by Chambers, Eggers, Notkin, Ruzzo, and others
© W.L.Ruzzo & UW CSE 1994-2001

What is a compiler? Examples

= Source languages = Target architectures

: - = Java = MIPS
‘ :}’Trmeru:: .C . x86

N - . CH+ = SPARC

Source Code Executable Code » LISP « Alpha
= A software tool that translates . ML .

= a program in source code form to

= an equivalent program in an executable (target) form = COBOL = C
= Converts from a form good for people to a form good LI

for computers

3 4
1
CSE401'’s
= Why study compilers? i project-oriented approach

= Start with a compiler for PL/O, written in C++

= We define additional language features
= Such as comments, arrays, call-by-reference
parameters, result-returning procedures, for loops,
etc.
= You modify the compiler to translate the
extended PL/0 language
= Project completed in well-defined stages

CSE 401, Sp '01, © W.L.Ruzzo & UW CSE 1994-2001

+a More on the project

= Strongly = Provides experience
recommended that with object-oriented

you work in two- design and with C++
person teams for the) .
= Provides experience

quarter ' ¢
Grading based on with working on a

wg What's hard about compiling

= | will present a small program to you,
character by character

= |dentify problems that you can see that you
will encounter in compiling this program

= Here’'s an example problem
= When we see a character '1’ followed by a

character "7’ , we have to convert it to the integer
17.

m
= correctness teal
= clarity of design and
implementation
= quality of testing
7
1o 1 21 i
2. n w2 7 2. * . isthe
3.t 13. 23 1 space
. character
4. 14. 24. +
5 5. P . 2 « This is not a
6 6 T 2.) PL/O
7. 17. 1 27. program!
s | 18. N
9. 10. t
0. = 20 (

Structure of compilers

= A common compiler structure has been
defined
= Years and years of deep, difficult research
intermixed with building of thousands of compilers
= Actual compilers often differ from this
prototype
= Primary differences are the ordering and clarity
with which the pieces are actually separated
= But the model is still extremely useful
= You will see the structure — to a large degree
— in the PL/O compiler

10

Prototype compiler structure

Lexical analysis Code generation
Syntactic analysis Optimization
.) Intermediate code
Semantic analysis generation

Storage
layout

= These parts are often lumped into two
categories
= The front-end
= Focuses on (repeated) analysis
= Determines what the program is
= The back-end
= Focuses on synthesis

= Produces target program equivalent to source
program

CSE 401, Sp '01, © W.L.Ruzzo & UW CSE 1994-2001

An example compilation

rodul e mai n; i = Areal PL/O program
var x:int, result: int; ;
procedure square(n:int); = We'll step through
begi n = Lexical analysis

result = n*n; = Syntactic analysis
end square; N .
begi n = Semantic analysis
X = input; = Storage layout
while x <> 0 do = Code generation
square(x);
output := result;
X = input;
end;
end nmain.

13

Lexical analysis

(AKA scanning and tokenizing)

= Read in characters and | dent - Letter AlphaNunt
clump them into tokens - P
= Also strip out white ! nt eger Dot
space and comments A phaNum : Letter | Digit
. . Letts w=ral..z]...
= Specify tokens with etier al lz,ﬁl\,l ! |z
regulgrlexpressmns Digit =09
= Use finite state

machines to scan

= Remember the Eg.
connection between \Wnl [x[<>10 [do]
regular expressions LLE[X - 0
and finite state keywd id op it keywd
machines

Syntactic analysis
(AKA parsing)

= Turn token stream into tree stnt
based on the program’s
syntactic structure

= Define syntax using context

if Test then Stmt

el se Stmt]
free grammar (CFG) o [_]
)) Test ::= Expr = Expr|
. ngNF isa comr;‘non n;)tatlon for Expr < Expr|...
e(ljmng csnctre e ;ynlax Expr :=Term + Term |
= Cares about semi-colons,
parens, and such Term ::= ;:[:To; Ie::;ncl O:'EV "
= Parser usually constructs AST T Factor l
representing abstract syntax -
Factor ::= - Factor | Id |

= Cares about statement

structures, precedence and such Int | (Expr)

15

Syntactic analysis example

value 1= Expr ;

if Test then Stmt
[el se Stmf] ;
Test ::= Expr = Expr|

Expr < Expr| ...
Expr :=Term + Term|

Term — Term | Term
Term ::= Factor * Factor |
... | Factor

I
[1d] El &l Factor ::= - Factor | Id

result:= n * n; Int | (Expr)

Lval ue

Semantic analysis

(Name resolution and type checking)

= Given AST
= figure out what declaration each name refers to
= perform static consistency checks
= Key data structure: symbol table
= maps names to information about name derived from
declaration
= Semantic analysis steps
Process each scope, top down

Process declarations in each scope into symbol table for
scope
Process body of each scope in context of symbol table

17

Storage layout

= Given symbol table, determine how and where
variables will be stored at runtime
= What representation is used for each kind of data?
= How much space does each variable require?
= In what kind of memory should it be placed?
= static, global memory
= stack memory
= heap memory
= Where in memory should it be placed?
= e.g., what stack offset?

CSE 401, Sp '01, © W.L.Ruzzo & UW CSE 1994-2001

= CoOde generation

= Given annotated AST and symbol table,
produce target code
= Often done as three steps
= Produce machine-independent low-level
representation of the program
(intermediate representation or IR)
= Perform machine-independent optimizations
(optional)
= Translate IR into machine-specific target
instructions
= Instruction selection

= Register allocation
19

Does this structure work well?

= FORTRAN | Compiler (circa 1954-56)
= 18 person years

= PL/0O Compiler
= By the end of the quarter, you'll have a
working compiler that's way better than
FORTRAN | in most respects
(key exception: optimization)

= Compilers vs. interpreters

= Compilers implement languages by
translation
= Interpreters implement languages directly
= Note: the line is not always crystal-clear
= Compilers and interpreters have tradeoffs
= Execution speed of program
= Start-up overhead, turn-around time
= Ease of implementation
= Programming environment facilities
= Conceptual clarity

21

= CoOmpiler engineering issues

= Portability

= Ideal is multiple front-ends and multiple back-ends
with a shared intermediate language

= Sequencing phases of compilation
= Stream-based vs. syntax-directed

= Multiple, separate passes vs. fewer,
integrated passes

= How to avoid compiler bugs?

Objectives: next lecture

= Define overall theory and practical structure
of lexical analysis

= Briefly recap regular expressions, finite state
machines, and their relationship
= Even briefer recap of the language hierarchy

= Show how to define tokens with regular
expressions

= Show how to leverage this style of token
definition in implementing a lexer

23

CSE 401, Sp '01, © W.L.Ruzzo & UW CSE 1994-2001

