
CSE 391
Shell commands
Streams, Redirection

Slides created by Josh Ervin. Based off slides made by Marty Stepp, Jessica Miller, Ruth Anderson, Brett Wortzman, and
Zorah Fung

pollev.com/cse391

● How was the last homework assignment?

AGENDA

● Logistics
● Useful shell commands (wc, more, less, grep)
● Standard in, Standard out
● Input/output redirection
● Pipes

MISC

● During lecture last week, one of the questions we asked was “Do you find
command line tools intimidating?”
○ 51% - Yes, and I feel like other people know more than me
○ 40% - A little, I’m not very comfortable with the command line
○ 9% - No, I feel comfortable with the command line

● If you have a question, there are other people that have that question as well!

FILE EXAMINATION

Command description

cat Print contents of a file

less Output file contents, one page

more Output file contents, one page

head Output number of lines of start of file

tail Output number of lines of end of ile

wc Count words, characters, lines in a file

SEARCHING AND SORTING

Command description

grep Search given file for pattern

sort Sort input or file, line based

uniq Strip duplicate adjacent lines

find Search filesystem

cut Remove section from each line of file

JAVA AND THE COMMAND LINE

Command description

javac ClassName.java Compile ClassName

java ClassName Run ClassName

python, ruby, perl, gcc,
go, etc

Run or compile other files in different
languages!

STANDARD STREAMS

● Every unix process has three streams, which are abstract locations that tell a
program where to read input from and where to write output to.

● There are three standard streams:
○ stdin (Standard Input)
○ stdout (Standard Output)
○ stderr (Standard Error)

● You’ve likely already seen this before when writing a Java program, the
System.out in System.out.println is referring to stdout

● By default, all of these default to the console (they print to the terminal and
read from user input into the terminal). However, this can be easily changed.

STANDARD STREAMS

Process

stdin
stdout

stderr

A program
such as ls,
cd, or grep

These default to
the console
(terminal)

int stream

0 stdin

1 stdout

2 stderr

STDIN VS PARAMETERS

● One of the most important distinctions in this class is the difference
between stdin and a command’s parameters.

● A parameter is an argument you give on the command line, like so
○ $ ls dir1
○ dir1 is a parameter, it does not come from standard input

● Standard input comes from the user, either from a file or from the console
○ $ grep “a”
○ Once you type this command, it accepts input from your keyboard until you close the stream

using Ctrl + D

STDIN VS PARAMETERS: JAVA

// Read and print input from stdin

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

while (console.hasNext()) {

System.out.println(console.next());

}

}

// Read and print the parameters

public static void main(String[] args) {

for (int i = 0; i < args.length; i++) {

System.out.println(args[i]);

}

}

OUTPUT REDIRECTION

command > filename

● Execute command and redirect its standard output to the given filename
○ If the file does not exist, create the given file.
○ If the file does exist, it will overwrite the given file (BE CAREFUL!!)
○ To append to a file instead of overwrite it, use >> instead of >

● Examples:
○ Output contents of current directory to files.txt: ls -l > files.txt
○ Append output of wc -l veggies.txt to files.txt: wc -l veggies.txt >> files.txt

INPUT REDIRECTION

command < filename

● Execute command and read its standard input from the contents of
filename instead of from the console.
○ If a program usually accepts from user input, such as a console Scanner in Java, it will

instead read from the file.

● Notice that this affects user input, not parameters.

STDERR REDIRECTION

command 2> filename

● Execute command and redirect its standard error to the given filename

command 2>&1

● Execute command and redirect standard error to standard output

command 2>&1 filename

● Execute command, redirect standard error to standard output, and redirect
standard output to filename

PIPES

command1 | command2

● Execute command1 and send its standard output as standard input to
command2.

● This is essentially shorthand for the following sequence of commands:
command1 > filename
command2 < filename
rm filename

● This is one of the most powerful aspects of unix - being able to chain
together simple commands to achieve complex behavior!

COMBINING COMMANDS

command1 ; command2

● Execute command1, then execute command2.

command1 && command2

● Execute command1, and if it succeeds, then execute command2.

THINK: pollev.com/cse391

● Write a command to store all of the lines in fruits.txt that contain the letter a
into a file called a.txt

http://www.youtube.com/watch?v=CH50zuS8DD0

PAIR: pollev.com/cse391

● Write a command to store all of the lines in fruits.txt that contain the letter a
into a file called a.txt

http://www.youtube.com/watch?v=4xG2aJa6UyY

THINK: pollev.com/cse391

● Suppose we have a file berries.txt where each line is the name of a different
berry. Write a command that outputs how many berries have names that
contain both the letter a and the letter e.

http://www.youtube.com/watch?v=CH50zuS8DD0

PAIR: pollev.com/cse391

● Suppose we have a file berries.txt where each line is the name of a different
berry. Write a command that outputs how many berries have names that
contain both the letter a and the letter e.

http://www.youtube.com/watch?v=4xG2aJa6UyY

THINK: pollev.com/cse391

● Write a command to output the contents between lines 10 and 15, both
inclusive, of the file veggies.txt

http://www.youtube.com/watch?v=CH50zuS8DD0

PAIR: pollev.com/cse391

● Write a command to output the contents between lines 10 and 15, both
inclusive, of the file veggies.txt

http://www.youtube.com/watch?v=4xG2aJa6UyY

LOGS

● A common exercise in daily software development and operations is looking
at log files - basically a status report of what is going on inside the program.

● We can look at the logs for all the CSE course websites by reading the file:
/cse/web/courses/logs/common_log

● For example, to actively watch the log file and only look for access to our
own course website, we could use the following

$ tail -f /cse/web/courses/logs/common_log | grep “391”

