
1

CSE 391

Lecture 2

Exploring Shell Commands, Streams, and Redirection

slides created by Marty Stepp, modified by Jessica Miller, Ruth Anderson, and Brett Wortzman

http://www.cs.washington.edu/391/

http://www.cs.washington.edu/391/

2

Lecture summary

• Unix file system structure

• Commands for file manipulation, examination, searching

• Java compilation: using parameters, input, and streams

• Redirection and Pipes

3

Unix file system

directory description

/ root directory that contains all others
(drives do not have letters in Unix)

/bin programs

/dev hardware devices

/etc system configuration files

 /etc/passwd stores user info

 /etc/shadow stores passwords

/home users' home directories

/media,

/mnt, ...

drives and removable disks that have been
"mounted" for use on this computer

/proc currently running processes (programs)

/tmp, /var temporary files

/usr user-installed programs

4

File examination

• Let’s explore what we can do here…

command description

cat output a file's contents on the console

more or less output a file's contents, one page at a time

head, tail output the first or last few lines of a file

wc count words, characters, and lines in a file

5

Searching and sorting

• grep is actually a very powerful search tool; more later...

• Exercise : Display the contents of the text file names.txt in
alphabetical order.

command description

grep search a file for a given string (useful options: –v and –i)

sort convert an input into a sorted output by lines

uniq strip duplicate (adjacent) lines

find search for files within a given directory

locate search for files on the entire system

which shows the complete path of a command

6

Shell History

• The shell remembers all the commands you’ve entered

• Can access them with the history command

• Can execute the most recent matching command with !

 Ex: !less will search backwards until it finds a command that starts
with less, and re-execute the entire command line

• Can execute also execute a command by number with !
165 19:36 ls

166 19:37 cat test.txt

167 19:38 pwd

168 19:40 history

Ex: !166 will execute: “cat test.txt”

7

Programming

• Exercise : Write/compile/run a program that prints "Hello, world!"

$ javac Hello.java
$ java Hello
Hello, world!
$

command description

javac ClassName.java compile a Java program

java ClassName run a Java program

python, perl, ruby,
gcc, sml, ...

compile or run programs in various
other languages

8

Programming

• Creating parameter input to programs
 String[] args holds any provided parameters
 Exercise: modify hello world to use parameters

• Parameters not the same as the input stream!
 Exercise: modify hello world to also use a Scanner to grab input

Let’s revisit the standard streams…

9

Streams in the Shell

• Stdin, stdout, stderr

 These default to the console

 Some commands that expect an input stream will thus read from the
console if you don’t tell it otherwise.

• Example: grep hi

 What happens? Why?

We can change the default streams to something other than the
console via redirection.

10

Output redirection

command > filename

 run command and write its output to filename instead of to console;

• think of it like an arrow going from the command to the file...

• if the file already exists, it will be overwritten (be careful)

 >> appends rather than overwriting, if the file already exists

 command > /dev/null suppresses the output of the command

 Example: ls -l > myfiles.txt

 Example: java Foo >> Foo_output.txt

 Example: cat > somefile.txt (writes console input to the file until
you press ^D)

 Exercise : List the vegetables in veggies.txt in alphabetical order in the
file sortedVeggies.txt.

11

Input redirection

command < filename

 run command and read its input from filename instead of console

• whenever the program prompts the user to enter input (such as reading
from a Scanner in Java), it will instead read the input from a file

• some commands don't use this; they accept a file name as an argument

 again note that this affects user input, not parameters

 useful with commands that can process standard input or files:

• e.g. grep, more, head, tail, wc, sort, uniq, write

 Example: java Guess < input.txt

 Exercise : run HelloWorld taking input from names.txt
 Exercise : run it again and write the output to output.txt

12

Combining commands

command1 | command2

 run command1 and send its console output as input to command2

 very similar to the following sequence:
command1 > filename
command2 < filename
rm filename

 Examples: grep Simpson names.txt | less
sort names.txt | uniq

 Exercise : How many types of beans are listed in veggies.txt?

13

Misusing pipes and cat

• Why doesn't this work to compile all Java programs?

ls *.java | javac

• Misuse of cat

 bad: cat input_filename | command

 good: command < input_filename

 bad: cat filename | more

 good: more filename

 bad: command | cat

 good: command

14

Commands in sequence

command1 ; command2

 run command1 and then command2 afterward (they are not linked)

command1 && command2

 run command1, and if it succeeds, runs command2 afterward

 will not run command2 if any error occurs during the running of 1

 Example: Make directory songs and move my files into it.

mkdir songs && mv *.mp3 songs

15

Links

• hard link: Two names for the same file.

$ ln orig other_name

 the above command links other_name as a duplicate name for orig
• if one is modified, the other is too; follows file moves

• soft (symbolic) link: A reference to another existing file.

$ ln -s orig_filename nickname

 the above command creates a reference nickname to the file orig_filename

•nickname can be used as though it were orig_filename

• but if nickname is deleted, orig_filename will be unaffected

command description

ln create a link to a file

unlink remove a link to a file

16

Keyboard shortcuts

^KEY means hold Ctrl and press KEY

key description

Up arrow repeat previous commands

^R command name search through your history for a command

Home/End or ^A/^E move to start/end of current line

" quotes surround multi-word arguments and
arguments containing special characters

* "wildcard" , matches any files;
can be used as a prefix, suffix, or partial name

Tab auto-completes a partially typed file/command name

^C or ^\ terminates the currently running process

^D end of input; used when a program is reading input
from your keyboard and you are finished typing

^S don't use this; hides all output until ^Q is pressed

