
1

CSE 391

Lecture 1

introduction to Linux/Unix environment

slides created by Marty Stepp, modified by Jessica Miller, Ruth Anderson, and Brett Wortzman

http://www.cs.washington.edu/391/

http://www.cs.washington.edu/391/

2

Lecture summary

• Course introduction and syllabus

• Unix and Linux operating system

• Introduction to Bash shell

3

Course Introduction

• Instructor:

 Brett Wortzman, brettwo@cs, CSE446

 Office hours: TBD

• TA:

 Omeed Magness, omag01@cs

• Website: http://cs.washington.edu/391

 Collection of tools and topics not specifically addressed in other courses
that CSE majors (and interested others) should know

 CSE 351 may be the first course you take that uses Linux

 Credit / No Credit course, determined by weekly assignments

 Graded primarily on effort/completion

 “Textbook” – Linux Pocket Guide

 Optional but recommended; very useful guide

http://cs.washington.edu/391

4

Course Topics

• Linux command line interface (CLI)

• Shell commands

• Users and groups

• Permissions

• Shell scripting

• Regular expressions

• Project management tools (e.g. makefiles)

• Version control (e.g. git)

5

Homework/Grading

• ~Nine weekly assignments

 Released after lecture

 Due following Tuesday, 11:59pm (no late work accepted)

• Based on material covered in that week’s lecture

 A few “self-discovery” extensions

 All required information in lecture, slides, book, and/or man pages

• Graded out of 2 points each

 Primarily determined by effort/completion (see syllabus)

 Total of 14 points required to receive credit

• To be completed on Linux/Unix systems (next slide)

• Collaboration allowed/encouraged, but ALL SUBMITTED WORK
MUST BE YOUR OWN

6

Accessing Linux/Unix

Roughly in suggested order…
•ssh to attu (CSE majors), linuxNN (EE majors), or ovid (all UW

students)

• Download/run CSE VM

• Visit CS or EE basement labs

• Set up Linux on your own machine

• See “Working at Home” on course website for more info

7

Operating systems

• What is an OS? Why have one?

• What is a Kernel?

8

Operating systems

• operating system: Manages activities and resources of a computer.

 software that acts as an interface between hardware and user

 provides a layer of abstraction for application developers

• features provided by an operating system:

 ability to execute programs (and multi-tasking)

 memory management (and virtual memory)

 file systems, disk and network access

 an interface to communicate with hardware

 a user interface (often graphical)

• kernel: The lowest-level core of an operating system.

9

Unix

• brief history:

 Multics (1964) for mainframes

 Unix (1969)

 K&R

 Linus Torvalds and Linux (1992)

• key Unix ideas:

 written in a high-level language (C)

 virtual memory

 hierarchical file system; "everything" is a file

 lots of small programs that work together to solve larger problems

 security, users, access, and groups

 human-readable documentation included

10

Linux

• Linux: A kernel for a Unix-like operating system.

 commonly seen/used today in servers, mobile/embedded devices, ...

• GNU: A "free software" implementation of many Unix-like tools

 many GNU tools are distributed with the Linux kernel

• distribution: A pre-packaged set of Linux software.

 examples: Ubuntu, Fedora, CentOS

• key features of Linux:

 open source software: source can be downloaded

 free to use

 constantly being improved/updated by the community

11

Linux Desktop

• X-windows

• window managers

• desktop environments

 Gnome

 KDE

• How can I try out Linux?

 CSE Virtual machine

 CSE basement labs

 attu shared server

12

Things you can do in Linux

• Load the course web site in a browser

• Install and play games

• Play MP3s

• Edit photos

• IM, Skype

13

Shell

• shell: An interactive program that uses user input to manage the
execution of other programs.

 A command processor, typically runs in a text window.

 User types commands, the shell runs the commands

 Several different shell programs exist:

•bash : the default shell program on most Linux/Unix systems

• We will use bash

• Other shells: Bourne, csh, tsch

• Why should I learn to use a shell when GUIs exist?

14

Why use a shell?

• Why should I learn to use a shell when GUIs exist?

 faster

 work remotely

 programmable

 customizable

 repeatable

15

Example shell commands

$ pwd
/homes/iws/rea
$ cd CSE391
$ ls
file1.txt file2.txt
$ ls –l
-rw-r--r-- 1 rea fac_cs 0 2017-03-29 17:45 file1.txt
-rw-r--r-- 1 rea fac_cs 0 2017-03-29 17:45 file2.txt
$ cd ..
$ man ls
$ exit

command description

pwd print the current working directory

cd changes the working directory

ls lists files in a directory

man brings up the manual for a command

exit logs out of the shell

16

System commands

• "man pages" are a very important way to learn new commands
man ls
man man

command description

man or info get help on a command

clear clears out the output from the console

exit exits and logs out of the shell

date output the system date

cal output a text calendar

uname print information about the current system

17

Relative directories

directory description

. the directory you are in ("working directory")

.. the parent of the working directory
(../.. is grandparent, etc.)

~ your home directory
(on many systems, this is /home/username)

~username username's home directory

~/Desktop your desktop

18

Unix file system

directory description

/ root directory that contains all others
(drives do not have letters in Unix)

/bin programs

/dev hardware devices

/etc system configuration files

 /etc/passwd stores user info

 /etc/shadow stores passwords

/home users' home directories

/media,

/mnt, ...

drives and removable disks that have been
"mounted" for use on this computer

/proc currently running processes (programs)

/tmp, /var temporary files

/usr user-installed programs

19

Directory commands

• some commands (cd, exit) are part of the shell ("builtins")

• others (ls, mkdir) are separate programs the shell runs

command description

ls list files in a directory

pwd print the current working directory

cd changes the working directory

mkdir create a new directory

rmdir delete a directory (must be empty)

20

Command-line arguments

• many accept arguments or parameters

 example: cp (copy) accepts a source and destination file path

• a program uses 3 streams of information:

 stdin, stdout, stderr (standard in, out, error)

• input: comes from user's keyboard

• output: goes to console

• errors can also be printed (by default, sent to console like output)

• parameters vs. input
 parameters: before Enter is pressed; sent in by shell

 input: after Enter is pressed; sent in by user

21

Command-line arguments

• most options are a - followed by a letter such as -c

 some are longer words preceded by two - signs, such as --count

• options can be combined: ls -l -a -r can be ls -lar

• many programs accept a --help or -help option to give more
information about that command (in addition to man pages)

 or if you run the program with no arguments, it may print help info

• for many commands that accept a file name argument, if you omit
the parameter, it will read from standard input (your keyboard)

22

File commands

• caution: the above commands do not prompt for confirmation
 easy to overwrite/delete a file; this setting can be overridden (how?)

• Exercise : Given several albums of .mp3 files all in one folder, move
them into separate folders by artist.

• Exercise : Modify a .java file to make it seem as though you
finished writing it on Dec 28 at 4:56am.

command description

cp copy a file

mv move or rename a file

rm delete a file

touch create a new empty file, or
update its last-modified time stamp

23

Exercise Solutions

• caution: the cp, rm, mv commands do not prompt for confirmation
 easy to overwrite/delete a file; this setting can be overridden (how?)

• Use “-i” with the command, “interactive” to prompt before overwrite

• Exercise : Given several albums of .mp3 files all in one folder, move
them into separate folders by artist.
 mkdir U2

 mkdir PSY

 mkdir JustinBieber

 mv GangnamStyle.mp3 PSY/

 mv Pride.mp3 U2/

• Exercise : Modify a .java file to make it seem as though you
finished writing it on Dec 28 at 4:56am.
 touch –t "201812280456" Hello.java

