
1 of 2

CSE 391, Spring 2019
Homework 7: Regular Expressions

Due Tuesday, May 28, 2019, 11:59 PM
This assignment focuses on using regular expressions and related commands such as sed and egrep. A set of files you

will need for this assignment are available in the file hw7.tar.gz, found on the Homework page.

Submit your answers to the Google Form. Note that you can return to the Google Form and modify and re-submit your

answers multiple times before the deadline. In response to each question, write the command that will perform the

task described, not the output that the command produces. Please be sure to write the entire command (including the

command name and the input file).

Task 1: Bash Shell Commands with egrep:

For each item below, determine a single bash shell statement that will perform the operation(s) requested. Each

solution must be a one-line shell statement, but you may use input/output redirection operators such as >, <, and |. If you

get the listed # of words, count yourself done. Note that the smaller words file found in hw7.tar.gz only has words up

to 8 characters long so it will not work for all of the questions; using /usr/share/dict/words is recommended there.

Note: If you are running on an older version of the CSE VM, you may need to install the /usr/share/dict/words

file you will use for this homework by typing this at a terminal command line (the 19wi version of the VM and attu

already have this file installed):

sudo yum –y install words

For these problems, write a command that uses grep -E or egrep to list the given words from the file

/usr/share/dict/words, one word per line. Use regular expressions as appropriate. Use a single grep call per

command.

1. All words that contain a 'z', followed by any single character, followed by an 'x'.

(On the CSE VM/attu there are 22 of them, from "azox" to "zaxes").

2. All words that contain the text "banana" or "mango".

(On the CSE VM/attu there are 21 of them, from "banana" to "mangour").

3. All words that contain a string of at least 5 lowercase vowels (a, e, i, o, or u) in a row.

(On the CSE VM/attu there are 9 of them, from "cadiueio" to "queueing").

4. All words that end with "never". (The word must end with "never", not just contain the substring "never".)

(On the CSE VM/attu there are 4 of them, from "minever" to "whenever").

5. All words that are exactly 25 letters long, in reverse ABC order.

(On the CSE VM/attu there are 8 of them, from "superincomprehensibleness" to "antidisestablishmentarian").

6. All words that start with either 'q' or 's', and that also contain a double z ('zz') later in the word.

(On the CSE VM/attu there are 66 of them, from "quizzability" to "swizzling", note that words may contain letters or -).

7. All 5-letter words that start/end with the same 2-letter substring.

(This one can take a long time to run on the words file on the CSE VM/attu, so you may want to use the shorter words

file included in hw7.tar.gz. In that file there are 8 of them, from "edged" to "verve". On the CSE VM/attu there are

51 of them, from "abwab" to "zanza" if you only allow letters in words). Hint: back-references will be useful here.

Hints: Recall the regular expression syntax shown in class, such as a . for any character, | for "or," [] for character

classes, {}, *, and + for quantities, ^ and $ for specifying the start/end of a line, and \< and \> for specifying the start/end

of a word. Also note that grep can use "back-references" to refer to sub-patterns captured previously between (and),

such as \1 for the first captured sub-pattern, \2 for the second, etc.

2 of 2

Task 2: Bash Shell Commands with sed:

For each of the next few problems, write a command that uses sed (preferably with the -r command-line argument to

enable full regular expressions) to search and replace text based on regular expressions. For some problems, you may

need to combine grep/egrep and sed using | . Each command should use at most one call to sed, but you may use

input/output redirection operators such as >, <, and | to combine it with other commands as needed.

Your commands should not create any temporary files during their execution. Feel free to somewhat match your

answers to the actual file you are given (e.g. only one word per line); your regexes do not have to work for a more general

case).

8. Output the contents of the file email.txt with all spaces replaced by dashes (-).

9. Output the contents of the file Questions.java with all occurrences of the word "public" replaced with the

word "private". (Don't match words that have "public" as a substring, such as "publicly" or "republic".)

10. Suppose that a writer named Violet uses too many exclamation points. Output the contents of the file v.txt but

with all occurrences of one or more ! marks in a row replaced with two question marks. (For example, ! would become

?? and !!!!!! would all be replaced by just two question marks ?? .)

11. Java programs can contain single-line // comments and multi-line /* ... */ comments. Sometimes a programmer

uses a multi-line comment syntax, but the comment only occupies a single line.

Write a command that finds /* ... */ comments in Questions.java that occupy a single line and replaces them with a

// comment. For example, /* hello there */ would become // hello there . (Your command doesn't need to

modify comments where the /* isn't on the same line as the */ . You may assume that any given line contains at most

one comment.)

12. Europeans format their dates differently than Americans. Where we would write a date such as "May 12, 2010",

they would write it as "12 May 2010". Output the contents of file dates.txt but with all dates changed from USA

format to European format. Don’t worry about coming up with a fancy regex to match only legal months or only legal

days of the month.

13. Convert all 10-digit phone numbers in the file phone.txt to 5-digit internal extension numbers.

(For example, Abba, Cadabra x67890 and Timss, Aaron x62859 .)

14. Give a modified version of #13 that takes the file phone.txt as input and displays the phone extension first, then

3 spaces, then the person's name.

(For example, x67890 Abba, Cadabra and x62859 Timss, Aaron .)

15. All 12-character words in the words file that start with 'p' through 's' and end with "ker", in Pig Latin.

In other words, show all of the characters of the word other than the first character, followed by a dash -, followed by the

first character followed by "ay". Note: words can consist of letters or a -.

(On the CSE VM/attu, there are 25 of them, from "atternmaker-pay" to "witchbacker-say".)

(Hint: Use grep or egrep first to reduce the file to the words of interest, before running sed on those words.)

Hints: The regular expression syntax hints from the previous section on grep also apply to sed. Also recall that some

special characters must be escaped by a \ backslash to be used in a regex pattern. Remember to put a 'g' at the end of your

pattern, such as s/oldpattern/newtext/g, to process all matches on a line.

