
Build Tools & Program Management

Joshua Ervin
November 19, 2019

CSE391

tar

tar

tar: create or extract ṫar archives.

• To create a single file from multiple files:
$ tar -cf filename.tar stuff_to_archive

• -c creates an archive
• -f read to/from a file
• stuff_to_archive — can be a list of filenames or a directory

• To extract files from an archive:
$ tar -xf filename.tar

• -x extracts files from an archive.

1

Compressed Files

command description

zip, unzip create or extract /zip compressed archives
gzip, gunzip GNU free compression programs (single-file)
bzip2, bunzip2 slower, optimized compression program (single-file)

• To compress a file
$ gzip filename produces: filename.gz

• To decompress a file
$ gunzip filename.gz produces: filename

2

.tar.gz archives

• Many Linux programs are distributed as .tar.gz archives
• You could unpack this in two steps:

1. gzip foo.tar.gz produces: foo.tar
2. tar -xf foo.tar extracts individual files

• You can also use the tar command to create/extract compressed archive files all in one step:
tar -xzf filename.tar.gz

• -x extracts files from an archive
• -z filter the archive through gzip (compress/decompress it)
• -f read to/from a file

3

tar examples

You can combine options (-v, -z, etc) in various ways:

• Create a single .tar archive file from multiple files (without compression)
$ tar -cvf filename.tar stuff_to_archive

• -c creates an archive file called filename.tar
• -c verbosley list the files processed
• -f read to/from a file
• stuff_to_archive can be a list of filenames or a directory

• Note: use the -z option and use filename.tar.gz to use compression
$tar -cvzf filename.tar.gz stuff_to_archive

4

5

The PATH Variable

How is PATH Used?

• When you run a command like ls, your system uses the following algorithm to find and
execute the program:

procedure execute(command)
for every directory in $PATH

if directory contains the command
execute the command
exit

end for

print "command not found"

6

Poll Everywhere: pollev.com/cse391

Suppose we have the following PATH and executable files with the following contents

PATH=/usr/home:/usr/bin:/usr/sbin

/usr/bin/hello.sh

echo "howdy partner"

/usr/sbin/hello.sh

echo "salutations"

What would be the output of the following?

$ hello.sh

7

Adding to your PATH

We usually add directories to our PATH in our .bashrc or .bash_profile

Prepending a directory to your PATH

PATH=/your/new/directory:$PATH

Appending a directory to your PATH

PATH=$PATH:/your/new/directory

8

With Great Power comes Great Responsibility!

What happens if we were to run the following command:

PATH=''

And then tried to open vim or emacs?

9

With Great Power comes Great Responsibility!

What happens if we were to run the following command:

PATH=''

And then tried to open vim or emacs?

We get the following error!

bash: vim: command not found

10

How Do We Fix This?

Instead of typing just individual commands, give the full path to an editor or command that you
can use to fix your PATH

$ /usr/bin/vim /homes/iws/joshue/.bashrc

11

Package Managers

Installing Programs: Package Manager

Most UNIX-like distributions come with a package manger — a tool to install, update, and remove
packages (i.e. applications) from the command line.

Installing firefox on windows:

1. Google search “firefox download”

2. Visit mozilla.org

3. Click on “Download Now”

4. Run the firefox installer

Installing firefox on Linux (centOS):

1. type sudo yum install firefox on the command line

12

What Exactly is a Package Manager?

Packages, or applications, are stored on a central repository managed by the organization who
builds a Linux distribution.

Most package managers require a vetting process before an application can be added to the
repository — this prevents malware and unstable applications from being added.

Your local package manager (yum on attu), pulls binaries from this repository and adds them to
your PATH.

13

Language-Specific Package Managers

Many modern programming languages come with their own package managers to install, upgrade,
and remove dependencies. Some examples include:

Programming Language Package Manager

python pip
rust cargo
ruby bundle
javascript npm
haskell cabal

14

make

Make: Motivation

• Single-file programs do not work well when code-bases get large
• Compilation can be slow
• Difficult to collaborate with other developers
• Cumbersome

• Large program are split into multiple files
• Each file represents a partial program or module
• Modules can be compiled separately or together.
• A module can be shared between multiple programs

15

make

• make: A utility for automatically compiling (building) executables and libraries from source
code.

• A very basic compilation manager
• Often used for C programs, but not language-specific
• Primitive, but still widely used due to familiarity and simplicity
• Similar programs: ant, maven, gradle

• Makefile: A script file that defines rules for what must be compiled and how to compile it.
• Makefiles describe which files depend on which others, and how to create/compile/build/update
each file in the system as needed.

16

Dependencies

• When a file relies on the contents of another
• Can be displayed as a dependency graph
• To build main.o, we need data.h, main.c, and io.h
• If any of those files are updated, we must rebuild main.o
• If main.o is updated, we must updated project

17

Makefile rule syntax

target: source1 source2 … sourceN
command
command

• source1 through sourceN are dependencies for building target

• A source is a file that is used as input to create the target (Sources are sometimes called
prerequisites)

• A target often depends on several sources

• make will execute the commands in the order they are listed.

NOTE: Makefiles must be indented using tabs. USING SPACES WILL NOT WORK!!!!

18

Using make

$ make target

• Uses the file named Makefile in the current directory
• Finds a rule in Makefile for building target and follows it

• If the target file does not exist, or if it is older than any of its sources, its commands will be
executed.

$ make

• builds the first target in the Makefile by default.

$ make -f makefilename

$ make -f makefilename target

• uses a makefile other than Makefile

19

Building a Simple Makefile

dress: pants shoes jacket
@echo "All done. Let's go outside!"

jacket: shirt
@echo "Putting on jacket"

shirt:
@echo "Putting on shirt"

pants: underpants
@echo putting on pants

... See attached files for full Makefile

20

Poll Everywhere!

Suppose we have the following Makefile. What files would be changed running $ make

Makefile

aprogram: foo.o bar.o
gcc -o aprogram foo.o bar.o

foo.o: foo.c
gcc -c foo.c

bar.o: bar.c
gcc -c bar.c

And ls -l produces the following:

aprogram: Nov 19 12:17
bar.c Nov 19 12:17
bar.o Nov 19 12:17
foo.c Nov 19 12:34
foo.o Nov 19 12:34

21

make: Variables

NAME = value (declaring a variable)
$(NAME) (using a variable)

Example Makefile

Makefile
OBJFILES = file1.o file2.o file3.o
PROGRAM = myprog

$(PROGRAM) : $(OBJFILES)
gcc -o $(PROGRAM) $(OBJFILES)

clean:
rm $(OBJFILES) $(PROGRAM)

22

make: Special Variables

$@ the current target file
$^ all sources listed for the current target
$< the first (left-most) source for the current target

Example Makefile

Makefile
myprog: file1.o file2.o file3.o

gcc $(CFLAGS) -o $@ $^

file1.o: file1.c file1.h file2.h
gcc $(CFLAGS) -c $<

23

make: Pattern Rules

• Rather than specifying individually how to convert every .c file into its corresponding .o file,
we can make use of the following pattern rules:

Makefile
CC = gcc
CLAGS = -Wall

%.o : %.c
$(CC) -c $(CFLAGS) $< -o $@

• In English, this means To create filename.o from filename.c, run gcc -c -Wall filename.c -o
filename.o

24

	tar
	The PATH Variable
	Package Managers
	make

