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tar

tar: create or extract ṫar archives.

• To create a single file from multiple files:
$ tar -cf filename.tar stuff_to_archive

• -c creates an archive
• -f read to/from a file
• stuff_to_archive — can be a list of filenames or a directory

• To extract files from an archive:
$ tar -xf filename.tar

• -x extracts files from an archive.
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Compressed Files

command description

zip, unzip create or extract /zip compressed archives
gzip, gunzip GNU free compression programs (single-file)
bzip2, bunzip2 slower, optimized compression program (single-file)

• To compress a file
$ gzip filename produces: filename.gz

• To decompress a file
$ gunzip filename.gz produces: filename
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.tar.gz archives

• Many Linux programs are distributed as .tar.gz archives
• You could unpack this in two steps:

1. gzip foo.tar.gz produces: foo.tar
2. tar -xf foo.tar extracts individual files

• You can also use the tar command to create/extract compressed archive files all in one step:
tar -xzf filename.tar.gz

• -x extracts files from an archive
• -z filter the archive through gzip (compress/decompress it)
• -f read to/from a file
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tar examples

You can combine options (-v, -z, etc) in various ways:

• Create a single .tar archive file from multiple files (without compression)
$ tar -cvf filename.tar stuff_to_archive

• -c creates an archive file called filename.tar
• -c verbosley list the files processed
• -f read to/from a file
• stuff_to_archive can be a list of filenames or a directory

• Note: use the -z option and use filename.tar.gz to use compression
$tar -cvzf filename.tar.gz stuff_to_archive
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The PATH Variable



How is PATH Used?

• When you run a command like ls, your system uses the following algorithm to find and
execute the program:

procedure execute(command)
for every directory in $PATH

if directory contains the command
execute the command
exit

end for

print "command not found"
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Poll Everywhere: pollev.com/cse391

Suppose we have the following PATH and executable files with the following contents

PATH=/usr/home:/usr/bin:/usr/sbin

/usr/bin/hello.sh

echo "howdy partner"

/usr/sbin/hello.sh

echo "salutations"

What would be the output of the following?

$ hello.sh
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Adding to your PATH

We usually add directories to our PATH in our .bashrc or .bash_profile

Prepending a directory to your PATH

PATH=/your/new/directory:$PATH

Appending a directory to your PATH

PATH=$PATH:/your/new/directory
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With Great Power comes Great Responsibility!

What happens if we were to run the following command:

PATH=''

And then tried to open vim or emacs?
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With Great Power comes Great Responsibility!

What happens if we were to run the following command:

PATH=''

And then tried to open vim or emacs?

We get the following error!

bash: vim: command not found
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How Do We Fix This?

Instead of typing just individual commands, give the full path to an editor or command that you
can use to fix your PATH

$ /usr/bin/vim /homes/iws/joshue/.bashrc
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Package Managers



Installing Programs: Package Manager

Most UNIX-like distributions come with a package manger — a tool to install, update, and remove
packages (i.e. applications) from the command line.

Installing firefox on windows:

1. Google search “firefox download”

2. Visit mozilla.org

3. Click on “Download Now”

4. Run the firefox installer

Installing firefox on Linux (centOS):

1. type sudo yum install firefox on the command line
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What Exactly is a Package Manager?

Packages, or applications, are stored on a central repository managed by the organization who
builds a Linux distribution.

Most package managers require a vetting process before an application can be added to the
repository — this prevents malware and unstable applications from being added.

Your local package manager (yum on attu), pulls binaries from this repository and adds them to
your PATH.
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Language-Specific Package Managers

Many modern programming languages come with their own package managers to install, upgrade,
and remove dependencies. Some examples include:

Programming Language Package Manager

python pip
rust cargo
ruby bundle
javascript npm
haskell cabal
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Make: Motivation

• Single-file programs do not work well when code-bases get large
• Compilation can be slow
• Difficult to collaborate with other developers
• Cumbersome

• Large program are split into multiple files
• Each file represents a partial program or module
• Modules can be compiled separately or together.
• A module can be shared between multiple programs
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make

• make: A utility for automatically compiling (building) executables and libraries from source
code.

• A very basic compilation manager
• Often used for C programs, but not language-specific
• Primitive, but still widely used due to familiarity and simplicity
• Similar programs: ant, maven, gradle

• Makefile: A script file that defines rules for what must be compiled and how to compile it.
• Makefiles describe which files depend on which others, and how to create/compile/build/update
each file in the system as needed.
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Dependencies

• When a file relies on the contents of another
• Can be displayed as a dependency graph
• To build main.o, we need data.h, main.c, and io.h
• If any of those files are updated, we must rebuild main.o
• If main.o is updated, we must updated project
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Makefile rule syntax

target: source1 source2 … sourceN
command
command

• source1 through sourceN are dependencies for building target

• A source is a file that is used as input to create the target (Sources are sometimes called
prerequisites)

• A target often depends on several sources

• make will execute the commands in the order they are listed.

NOTE: Makefiles must be indented using tabs. USING SPACES WILL NOT WORK!!!!
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Using make

$ make target

• Uses the file named Makefile in the current directory
• Finds a rule in Makefile for building target and follows it

• If the target file does not exist, or if it is older than any of its sources, its commands will be
executed.

$ make

• builds the first target in the Makefile by default.

$ make -f makefilename

$ make -f makefilename target

• uses a makefile other than Makefile
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Building a Simple Makefile

dress: pants shoes jacket
@echo "All done. Let's go outside!"

jacket: shirt
@echo "Putting on jacket"

shirt:
@echo "Putting on shirt"

pants: underpants
@echo putting on pants

... See attached files for full Makefile
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Poll Everywhere!

Suppose we have the following Makefile. What files would be changed running $ make

Makefile

aprogram: foo.o bar.o
gcc -o aprogram foo.o bar.o

foo.o: foo.c
gcc -c foo.c

bar.o: bar.c
gcc -c bar.c

And ls -l produces the following:

aprogram: Nov 19 12:17
bar.c Nov 19 12:17
bar.o Nov 19 12:17
foo.c Nov 19 12:34
foo.o Nov 19 12:34
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make: Variables

NAME = value (declaring a variable)
$(NAME) (using a variable)

Example Makefile

Makefile
OBJFILES = file1.o file2.o file3.o
PROGRAM = myprog

$(PROGRAM) : $(OBJFILES)
gcc -o $(PROGRAM) $(OBJFILES)

clean:
rm $(OBJFILES) $(PROGRAM)
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make: Special Variables

$@ the current target file
$^ all sources listed for the current target
$< the first (left-most) source for the current target

Example Makefile

Makefile
myprog: file1.o file2.o file3.o

gcc $(CFLAGS) -o $@ $^

file1.o: file1.c file1.h file2.h
gcc $(CFLAGS) -c $<
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make: Pattern Rules

• Rather than specifying individually how to convert every .c file into its corresponding .o file,
we can make use of the following pattern rules:

Makefile
CC = gcc
CLAGS = -Wall

%.o : %.c
$(CC) -c $(CFLAGS) $< -o $@

• In English, this means To create filename.o from filename.c, run gcc -c -Wall filename.c -o
filename.o
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