
1

CSE 391
Lecture 7

Intro	to	shell	scripting

slides	created	by	Marty	Stepp,	modified	by	Jessica	Miller,	Ruth	Anderson	and	Zorah	Fung
http://www.cs.washington.edu/391/

2

Lecture summary
• basic	script	syntax	and	running	scripts

• shell	variables	and	types

• control	statements:	 the	for	loop,	if/else,	while/until

• arrays

• functions

3

Shell scripts
• script:	A	short	program	meant	to	perform	a	targeted	task.

§ a	series	of	commands	combined	into	one	executable	 file

• shell	script:	A	script	that	is	executed	by	a	command-line	shell.
§ bash (like	most	shells)	has	syntax	for	writing	script	programs
§ if	your	script	becomes	>	~100-150	lines,	switch	to	a	real	 language

• To	write	a	bash script	(in	brief):
§ type	one	or	more	commands	into	a	file;	 	save	it
§ type	a	special	header	in	the	file	to	identify	it	as	a	script	(next	slide)
§ enable	execute	permission	on	the	file
§ run	it!

4

Basic script syntax
#!interpreter

§ written	as	the	first	line	of	an	executable	 script;		causes	a	file	to	be	
treated	as	a	script	to	be	run	by	the	given	interpreter
• (we	will	use	/bin/bashas	our	interpreter)

• Example:	A	script	that	removes	some	files	and	then	 lists	all	files:

#!/bin/bash
rm output*.txt
ls -l

Tip: The file command returns the type of the file, e.g.: file foo.sh
foo.sh: Bourne-Again shell script, ASCII text executable

5

Running a shell script
• by	making	it	executable (most	common;		recommended):

chmod u+x myscript.sh
./myscript.sh
§ fork	a	process	and	run	commands	in	myscript.sh and	exit

• by	launching	a	new	shell :	(will	consult	your	.bashrc)
bash myscript.sh
§ advantage:	can	run	without	execute	permission	 (still	need	read	
permission)

• by	running	it	within	the	current	shell:
source myscript.sh
§ advantage:	any	variables	defined	by	the	script	remain	in	this	shell
(more	on	variables	 later)

§ Will	consult	your	aliases

6

echo

• Example:	A	script	that	prints	your	current	directory.

#!/bin/bash
echo "This is my amazing script!"
echo "Your current dir is: $(pwd)"

• Exercise	:	Write	a	script	that	when	run	on	attu	does	the	following:
§ clears	the	screen
§ displays	the	current	date/time
§ Shows	who	is	currently	logged	on	&	info	about	processor

command description
echo produces	its	parameter(s)	 as	output

(the	println of	shell	scripting)
-n flag	to	remove	newline	(print vs println)

7

Script example
#!/bin/bash
clear # please do not use clear in your hw scripts!
echo "Today's date is $(date)"
echo

echo "These users are currently connected:"
w -h | sort
echo

echo "This is $(uname –s) on a $(uname –m) processor."
echo

echo "This is the uptime information:"
uptime
echo
echo "That's all folks!"

8

Comments
comment text

§ bash	has	only	single-line	 comments;	 	there	is	no	/*	...	*/	equivalent

• Example:

#!/bin/bash
Leonard's first script ever
by Leonard Linux
echo "This is my amazing script!"
echo "The time is: $(date)"

This is the part where I print my current directory
echo “Current dir is: $(pwd)"

9

Shell variables
• name=value (declaration)

§ must	be	written	EXACTLY as	shown;		no	spaces	allowed
§ often	given	all-uppercase	names	by	convention
§ once	set,	the	variable	 is	in	scope	until	unset	(within	the	current	shell)

AGE=89
NAME="Mickey Mouse"

• $name (usage)

echo "$NAME is $AGE years old"

Produces:
Mickey Mouse is 89 years old

10

Common errors
• if	you	misspell	a	variable's	name,	a	new	variable	is	created

NAME=Ruth
...
Name=Rob # oops; meant to change NAME

• if	you	use	an	undeclared	variable,	an	empty	value	is	used
echo "Welcome, $name" # Welcome,

• when	storing	a	multi-word	string,	must	use	quotes
NAME=Ruth Anderson # Won’t work
NAME=“Ruth Anderson" # $NAME is Ruth Anderson

11

More Errors…
• Using	$ during	assignment	or	reassignment

§ $mystring=“Hi there” # error

§ mystring2=“Hello”
§ …
§ $mystring2=“Goodbye” # error

• Forgetting	echo	to	display	a	variable
§ $name
§ echo $name

12

Capture command output
variable=$(command)

§ captures	the	output	of	command into	the	given	variable

• Simple	Example:
FILE=$(ls *.txt)
echo $FILE

• More	Complex	Example:
FILE=$(ls -1 *.txt | sort | tail –n 1)
echo "Your last text file is: $FILE"

§ What	if	we	use	double	quotes	instead?

13

Double vs. Single quotes
Double	quotes	- Variable	names	are	expanded	&	$()	work

NAME="Bugs Bunny"
echo "Hi $NAME! Today is $(date)"
Produces:
Hi Bugs Bunny! Today is Tues Apr 25 13:37:45 PDT 2017

Single quotes	– don’t expand	variables	or	execute	commands	in	$()

echo 'Hi $NAME! Today is $(date)'
Produces:
Hi $NAME! Today is $(date)

Tricky	Example:
§ STAR=*

• echo "You are a $STAR"
• echo 'You are a $STAR'
• echo You are a $STAR

Lesson: When referencing a variable, it is
good practice to put it in double quotes.

14

Types and integers
• most	variables	are	stored	as	strings

§ operations	on	variables	are	done	as	string	operations,	not	numeric

• to	instead	perform	integer	operations:
x=42
y=15
let z="$x + $y" # 57

• integer	operators:	 	+ - * / %
§ bc command	can	do	more	complex	expressions

• if	a	non-numeric	variable	is	used	in	numeric	context,	 	you'll	get	0

15

Bash vs. Java

x=3
§ x vs.		$x vs.		"$x" vs.		'$x' vs. \'$x\' vs. 'x'

Java Bash
String s = "hello"; s=hello
System.out.println("s"); echo s
System.out.println(s); echo $s
s = s + "s"; // "hellos" s=${s}s
String s2 = "25";
String s3 = "42";
String s4 = s2 + s3; // "2542"
int n = Integer.parseInt(s2)

+ Integer.parseInt(s3); // 67

s2=25
s3=42
s4=$s2$s3
let n="$s2 + $s3"

16

Special variables

§ these	are	automatically	defined	for	you	in	every	bash	session
• Exercise	:	Change	your	attu prompt	to	look	like	this:

jimmy@mylaptop:$
§ See	man bash for	more	info	(search	on	PROMPTING)

variable description
$DISPLAY where	to	display	graphical	X-windows	output
$HOSTNAME name	of	computer	you	are	using
$HOME your	home	directory
$PATH list	of	directories	holding	commands	to	execute
$PS1 the	shell's	command	prompt	string
$PWD your	current	directory
$SHELL full	path	to	your	shell	program
$USER your	user	name

17

$PATH
• When	you	run	a	command,	the	shell	looks	for	that	program	in	all	
the	directories	defined	 in	$PATH

• Useful	to	add	commonly	used	programs	to	the	$PATH

• Exercise:		modify	the	$PATH	so	that	we	can	directly	run	our	shell	
script	from	anywhere
§ echo	$PATH
§ PATH=$PATH:/homes/iws/rea

• What	happens	 if	we	clear	the	$PATH	variable?

18

set, unset, and export

§ typing	set or	exportwith	no	parameters	 lists	all	variables
§ Exercise:		set	a	local	variable,	and	launch	a	new	bash	shell

• Can	the	new	shell	see	the	variable?
• Now	go	back	and	export	and	launch	a	shell	again.		Can	you	see	it	now?

shell	command description
set With	sets	the	value	of	a	variable

(not	usually	needed;	can	just	use	x=3 syntax)
unset deletes	a	variable	and	its	value
export sets	a	variable	and	makes	it	visible	to	any	

programs	launched	by	this	shell
readonly sets	a	variable	to	be	read-only

(so	that	programs	launched	by	this	shell	cannot	
change	its	value)

19

Console	I/O

§ variables	read	from	console	are	stored	as	strings

• Example:
#!/bin/bash
read -p "What is your name? " name
read -p "How old are you? " age
printf "%10s is %4s years old" $name $age

shell	command description
read reads	value	from	console	and	stores	it	into	a	variable
echo prints	output	to	console
printf prints	complex	formatted	output	to	console

20

Command-line arguments

§ slide20.sh:
#!/bin/bash
echo “Name of script is $0”
echo “Command line argument 1 is $1”
echo “there are $# command line arguments: $@”

•slide20.sh argument1 argument2 argument3

variable description
$0 name	of	this	script
$1, $2, $3, ... command-line	arguments

$# number	of	arguments
$@ array	of	all	arguments

21

for loops
for name in value1 value2 ... valueN; do

commands
done

• Note	the	semi-colon	after	the	values!
• the	pattern	after	in can	be:

§ a	hard-coded	set	of	values	you	write	in	the	script
§ a	set	of	file	names	produced	as	output	from	some	command
§ command	line	arguments:	 		$@

• Exercise:		create	a	script	that	loops	over	every	.txt	file	in	the	
directory,	renaming	the	file	to	.txt2

for file in *.txt; do
mv $file ${file}2

done

22

for loop examples
for val in red blue green; do

echo "val is: $val"
done

for val in $@; do
echo "val is: $val"

done

for val in $(seq 4); do
echo "val is: $val"

done

command description
seq outputs	a	sequence	of	numbers

23

Exercise
• Write	a	script	createhw.sh that	creates	directories	named	hw1,	
hw2,	...	up	to	a	maximum	passed	as	a	command-line	argument.

$./createhw.sh 8

§ Copy	criteria.txt into	each	assignment	 i as	criteria(2*i).txt
§ Copy	script.sh into	each,	and	run	it.

• output:		Script running on hw3 with criteria6.txt ...

24

Exercise solution

#!/bin/bash
Creates directories for a given number of assignments.

for num in $(seq $1); do
let CRITNUM="2 * $num"
mkdir "hw$num"
cp script.sh "hw$num/"
cp criteria.txt "hw$num/criteria$CRITNUM.txt"
echo "Created hw$num."
cd "hw$num/"
bash ./script.sh
cd ..

done

25

Exit Status
• Every	Linux	command	returns	an	integer	code	when	it	finishes,	
called	its	“exit	status”
§ 0	usually*	denotes	success,	or	an	OK	exit	status
§ Anything	other	than	0	(1	to	255)	usually	denotes	an	error

• You	can	return	an	exit	status	explicitly	using	the	exit statement
• You	can	check	the	status	of	the	last	command	executed	 in	the	
variable	$?

$ cat someFileThatDoesNotExist.txt
$ echo $?
1 # “Failure”
$ ls
$ echo $?
0 # “Success”

* One example exception: diff returns “0” for no differences,
“1” if differences found, “2” for an error such as invalid filename argument

26

The test command
$ test 10 –lt 5
$ echo $?
1 # “False”, “Failure”
$ test 10 –gt 5
$ echo $?
0 # “True”, “Success”

• Another	syntax	for	the	test	command:
Don’t	forget	the	space	after	[and	before]

$ [10 –lt 5]
$ echo $?
1 # “False”, “Failure”
$ [10 –gt 5]
$ echo $?
0 # “True”, “Success”

27

test operators

if [$USER = “husky14"]; then
echo ‘Woof! Go Huskies!’

fi

LOGINS=$(w -h | wc -l)
if [$LOGINS -gt 10]; then

echo ‘attu is very busy right now!’
fi

comparison	 operator description
=,		!=,		\<,		\> compares	two	string variables
-z,		-n tests	if	a	string	is	empty	(zero-length)	or	not	empty	

(nonzero-length)
-lt,		-le,		-eq,
-gt,		-ge,		-ne

compares	numbers;	equivalent	to	Java's
<,		<=,		==,		>,		>=,		!=

-e, -f, -d tests	whether	a	given	file	or	directory	exists
-r,		-w, -x tests	whether	a	file	exists	and	is	readable/writable/executable

*Note: man test will show other operators.

28

if/else
if [condition]; then # basic if

commands
fi

if [condition]; then # if / else if / else
commands1

elif [condition]; then
commands2

else
commands3

fi

• The [] syntax is	actually	shorthand	for	a	shell	command	called	“test”	
(Try:	“man	test”)

• there	MUST be	spaces	as	shown:	
if space [space condition space]

• include	the	semi-colon	after] (or	put	“then” on	the	next	line)

29

More if testing

alert user if running >= 10 processes when
attu is busy (>= 5 users logged in)
LOGINS=$(w -h | wc -l)
PROCESSES=$(ps -u $USER | wc -l)
if [$LOGINS -ge 5 -a $PROCESSES -gt 10]; then

echo "Quit hogging the server!"
fi

compound	comparison	operators description
if [expr1 -a expr2]; then ...
if [expr1] && [expr2]; then ...

and

if [expr1 -o expr2]; then ...
if [expr1] || [expr2]; then ...

or

if [! expr]; then ... not

30

Common errors
• [: -eq: unary operator expected

§ you	used	an	undefined	 variable	in	an	if test

• [: too many arguments
§ you	tried	to	use	a	variable	with	a	large,	complex	value	(such	as	multi-
line	output	from	a	program)	as	though	it	were	a	simple	 int	or	string

• let: syntax error: operand expected (error token is " ")
§ you	used	an	undefined	 variable	in	a	letmathematical	expression

31

safecopy Exercise
• Write	a	script	called	safecopy that	will	mimic	the	behavior	of	cp –i
where	from is	a	filename	and	to is	a	filename:

$ cp –i from.txt to.txt
Do you want to overwrite to.txt? (yes/no)

$./safecopy.sh from.txt to.txt
Do you want to overwrite to.txt? (yes/no)

32

safecopy Exercise Solution
#!/bin/bash

FROM=$1
TO=$2

if [-e $TO]; then
read -p "Do you want to overwrite $TO?" ANSWER
if [$ANSWER = "yes"]; then

cp $FROM $TO
fi

else
cp $FROM $TO

fi

33

while and until loops

while [condition]; do # go while condition is true
commands

done

until [condition]; do # go while condition is false
commands

done

34

While exercise
• Prompt	the	user	for	what	they	would	like	to	do.		While	their	answer	
is	“open the pod bay doors” tell	them	that	you	cannot	do	
that	and	prompt	for	another	action.

35

While Exercise solution
#!/bin/bash
What would you like to do?
read -p "What would you like me to do? " ACTION
echo "You said: $ACTION"
while ["$ACTION" = "open the pod bay doors"]; do

echo "I'm sorry Dave, I'm afraid I can't do that."
read -p "What would you like me to do? " ACTION
echo "You said: $ACTION"

done
echo "Bye"

The quotes around “$ACTION” are important here,
try removing them and see what happens.

36

select and case
• Bash	Select	statement:

PS3=prompt # Special variable* for the select prompt
select choice in choices; do

commands
break # Break, otherwise endless loop

done

• Bash	Case	statement:
case EXPRESSION in

CASE1) COMMAND-LIST;;
CASE2) COMMAND-LIST;;
...
CASEN) COMMAND-LIST;;

esac *see lecture 5

37

Select Example
PS3="What is your favorite food? " # Goes with the select stmt

echo "Welcome to the select example!"
echo "It prints out a list of choices"
echo "but does nothing interesting with the answer."

select CHOICE in "pizza" "sushi" "oatmeal" "broccoli"; do
echo "You picked $CHOICE"
break

done

echo “For the select statement, you pick a number as your choice."

38

Case Example
echo "Welcome to the case example!"
echo "Without a select statement, you must get the spelling/case exact."
read -p "What format do you prefer? (tape/cd/mp3/lp) " FORMAT
echo "You said $FORMAT"

case "$FORMAT" in
"tape") echo "no random access!";;
"cd") echo "old school";;
"mp3") echo "how modern";;
"lp") echo "total retro";;

esac

39

select/case Exercise
• Have	the	user	select	their	favorite	kind	of	music,	and	output	a	
message	based	on	their	choice

40

select/case Exercise Solution
PS3="What is your favorite kind of music? "
select CHOICE in "rock" "pop" "dance" "reggae"; do

case "$CHOICE" in
"rock") echo "Rock on, dude.";;
"pop") echo "Top 100 is called that for a reason.";;
"dance") echo "Let's lay down the Persian!";;
"reggae") echo "Takin' it easy...";;
*) echo "come on...you gotta like something!";;

esac
break

done

41

Arrays
name=(element1 element2 ... elementN)

name[index]=value # set an element

$name # get first element

${name[index]} # get an element

${name[*]} # elements sep.by spaces

${#name[*]} # array's length

§ arrays	don't	have	a	fixed	length;	they	can	grow	as	necessary
§ if	you	go	out	of	bounds,	shell	will	silently	give	you	an	empty	string

• you	don't	need	to	use	arrays	in	assignments	 in	this	course

42

Functions
function name() { # declaration

commands # ()’s are optional
}

name # call

§ functions	are	called	simply	by	writing	their	name	(no	parens)
§ parameters	can	be	passed	and	accessed	as	$1,	$2,	etc.

• you	don't	need	to	use	functions	in	assignments	 in	this	course

