
1

CSE 391
Lecture 1

introduction	to	Linux/Unix	environment

slides	created	by	Marty	Stepp,	modified	by	Jessica	Miller,	Ruth	Anderson,	and	Brett	Wortzman
http://www.cs.washington.edu/391/



2



3

Lecture summary
• Course	introduction	and	syllabus

• Unix	and	Linux	operating	system

• Introduction	to	Bash	shell



4

Course Introduction
• Instructor:
§ Zorah Fung,	zorahf@cs
§ CSE2	311
§ OH:	Tues,	2:30-3:30pm



5

Course Introduction
• TA:

§ Josh	Ervin,	joshue@uw



6

Course Introduction
• Website:	http://cs.washington.edu/391

§ Collection	of	tools	and	topics	not	specifically	addressed	in	other	
courses	that	CSE	majors	(and	interested	others)	should	know
§ CSE	351	may	be	the	first	course	you	take	that	uses	Linux

§ Credit	/	No	Credit	course,	determined	 by	weekly	assignments
§ Graded	primarily	on	effort/completion

§ “Textbook”	 – Linux	Pocket	Guide
§ Optional	but	recommended;	 very	useful	guide



7

Course Topics
• Linux	command	line	interface	(CLI)
• Shell	commands
• Users	and	groups
• Permissions
• Shell	scripting
• Regular	expressions
• Project	management	tools	(e.g.	makefiles)
• Version	control	(e.g.	git)



8

Homework/Grading
• ~Nine	weekly	assignments

§ Released	after	lecture
§ Due	following	Tuesday,	1:00pm	(no	late	work	accepted)

• Based	on	material	covered	 in	that	week’s	 lecture
§ A	few	“self-discovery”	 extensions
§ All	required	 information	in	lecture,	slides,	book,	and/or	man	pages

• Graded	out	of	2	points	each
§ Primarily	determined	 by	effort/completion	 (see	syllabus)
§ Total	of	14	points	required	 to	receive	 credit	for	the	course

• To	be	completed	on	Linux/Unix	systems	(next	slide)
• Collaboration	allowed/encouraged,	 but	ALL	SUBMITTED	WORK	
MUST	BE	YOUR	OWN



9

Accessing Linux/Unix
Roughly	in	suggested	order…
•ssh to	attu (CSE	majors),	linuxNN (EE	majors),	or	ovid (all	UW	
students)

• Download/run	CSE	VM
• Visit	CS	or	EE	basement	 labs
• Set	up	Linux	on	your	own	machine

• See	“Working	at	Home”	on	course	website	for	more	info



10

Operating systems
• What	is	an	OS?		Why	have	one?

• What	is	a	Kernel?



11

Operating systems
• operating	system:	Manages	activities	and	resources	of	a	computer.

§ software	that	acts	as	an	interface	between	hardware	and	user
§ provides	a	layer	of	abstraction	for	application	developers

• features	provided	by	an	operating	system:
§ ability	to	execute	programs	 (and	multi-tasking)
§ memory	management (and	virtual	memory)
§ file	systems,	disk	and	network	access
§ an	interface	to	communicate	with	hardware
§ a	user	interface (often	graphical)

• kernel:	The	lowest-level	core	of	an	operating	system.



12

Unix
• brief	history:

§ Multics	(1964)	for	mainframes
§ Unix	(1969)
§ K&R
§ Linus	Torvalds	and	Linux	(1992)

• key	Unix	ideas:
§ written	in	a	high-level	 language	(C)
§ virtual	memory
§ hierarchical	file	system;	 "everything"	 is	a	file
§ lots	of	small	programs	that	work	together	to	solve	larger	problems
§ security,	users,	access,	and	groups
§ human-readable	documentation	 included



13

Linux
• Linux:	A	kernel	 for	a	Unix-like	operating	system.

§ commonly	 seen/used	today	in	servers,	mobile/embedded	 devices,	...

• GNU:	A	"free	software"	implementation	 of	many	Unix-like	tools
§ many	GNU	tools	are	distributed	with	the	Linux	kernel

• distribution:	 A	pre-packaged	set	of	Linux	software.
§ examples:	Ubuntu,	Fedora,	CentOS

• key	features	of	Linux:
§ open	source	software:	source	can	be	downloaded
§ free	to	use
§ constantly	being	improved/updated	by	the	community



14

Linux Desktop
• X-windows
• window	managers
• desktop	environments

§ Gnome
§ KDE

• How	can	I	try	out	Linux?
§ CSE	Virtual	machine
§ CSE	basement	labs	
§ attu shared	server



15

Things you can do in Linux
• Load	the	course	web	site	in	a	browser

• Install	and	play	games

• Play	MP3s

• Edit	photos

• IM,	Skype



16

Shell
• shell:	An	interactive	program	that	uses	user	input	to	manage	the	
execution	of	other	programs.	
§ A	command	processor,	typically	runs	in	a	text	window.
§ User	types	commands,	the	shell	runs	the	commands
§ Several	different	shell	programs	exist:

•bash :	the	default	shell	program	on	most	Linux/Unix	systems
• We	will	use	bash
• Other	shells:	Bourne,	csh,	tsch

• Why	should	I	learn	to	use	a	shell	when	GUIs	exist?



17

Why use a shell?
• Why	should	I	learn	to	use	a	shell	when	GUIs	exist?

§ faster
§ work	remotely
§ programmable
§ customizable
§ repeatable



18

Example shell commands

$ pwd
/homes/iws/rea
$ cd CSE391
$ ls
file1.txt file2.txt
$ ls –l
-rw-r--r-- 1 rea fac_cs 0 2017-03-29 17:45 file1.txt
-rw-r--r-- 1 rea fac_cs 0 2017-03-29 17:45 file2.txt
$ cd ..
$ man ls
$ exit

command description
pwd print	the	current	working	directory
cd changes	the	working	directory
ls lists	files	in	a	directory
man brings	up	the	manual	for	a	command
exit logs	out	of	the	shell



19

System commands

• "man	pages"	are	a	very	important	way	to	learn	new	commands
man ls
man man

command description
man or info get	help	on	a	command
clear clears	out	the	output	from	the	console
exit exits	and	logs	out	of	the	shell
date output	the	system	date
cal output	a	text	calendar
uname print	information	about	the	current	system



20

Relative directories
directory description

. the	directory	you	are	in	("working	directory")

.. the	parent	of	the	working	directory
(../.. is	grandparent,	etc.)

~ your	home directory
(on	many	systems,	this	is	/home/username )

~username username's	home directory

~/Desktop your	desktop



21

Unix file system
directory description

/ root	directory	that	contains	all	others
(drives	do	not	have	letters	in	Unix)

/bin programs
/dev hardware	devices
/etc system	configuration	files

§ /etc/passwd stores	user	info
§ /etc/shadow stores	passwords

/home users'	home	directories
/media,
/mnt,		...

drives	and	removable	disks	that	have	been	
"mounted"	for	use	on	this	computer

/proc currently	running	processes	(programs)
/tmp, /var temporary	files
/usr user-installed	programs



22

Directory commands

• some	commands	(cd,	exit)	are	part	of	the	shell	("builtins")
• others	(ls,	mkdir)	are	separate	programs	the	shell	runs

command description
ls list	files	in	a	directory
pwd print	the	current	working	directory
cd changes	the	working	directory
mkdir create	a	new	directory
rmdir delete	a	directory	(must	be	empty)



23

Command-line arguments
• many	accept	arguments or	parameters

§ example:	cp (copy)	accepts	a	source	and	destination	file	path

• a	program	uses	3	streams	of	information:
§ stdin,	stdout,	stderr		(standard	in,	out,	error)

• input:	comes	from	user's	keyboard
• output:	goes	to	console
• errors can	also	be	printed	 	(by	default,	sent	to	console	like	output)

• parameters	vs.	input
§ parameters: before	Enter	is	pressed;		sent	in	by	shell
§ input: after	Enter	is	pressed;		sent	in	by	user



24

Command-line arguments
• most	options	are	a	- followed	by	a	letter	such	as	-c

§ some	are	longer	words	preceded	by	two	- signs,	such	as	--count

• options	can	be	combined:	ls -l -a -r can	be		ls -lar

• many	programs	accept	a	--help or	-help option	to	give	more	
information	about	that	command	(in	addition	to	man pages)
§ or	if	you	run	the	program	with	no	arguments,	 it	may	print	help	info

• for	many	commands	that	accept	a	file	name	argument,	 if	you	omit	
the	parameter,	 it	will	read	from	standard	input	(your	keyboard)



25

File commands

• caution:	the	above	commands	do	not	prompt	for	confirmation
§ easy	to	overwrite/delete	 a	file;	 		this	setting	can	be	overridden	 (how?)

• Exercise	:	Given	several	albums	of	.mp3 files	all	in	one	folder,	move	
them	into	separate	folders	by	artist.

• Exercise	:	Modify	a .java file to	make	it	seem	as	though	you	
finished	writing	it	on	Dec	28	at	4:56am.

command description
cp copy	a	file
mv move	or	rename	a	file
rm delete	a	file
touch create	a	new	empty	file,	or

update	its	last-modified	time	stamp



26

Exercise Solutions 
• caution:	the	cp,	rm,	mv	commands	do	not	prompt	for	confirmation

§ easy	to	overwrite/delete	 a	file;	 		this	setting	can	be	overridden	 (how?)
• Use	“-i”	with	the	command,	“interactive”	to	prompt	before	overwrite

• Exercise	:	Given	several	albums	of	.mp3 files	all	in	one	folder,	move	
them	into	separate	folders	by	artist.
§ mkdir U2
§ mkdir PSY
§ mkdir JustinBieber 
§ mv GangnamStyle.mp3 PSY/
§ mv Pride.mp3 U2/

• Exercise	:	Modify	a .java file to	make	it	seem	as	though	you	
finished	writing	it	on	Dec	28	at	4:56am.
§ touch –t "201812280456" Hello.java



27

Text editors

• you	cannot	run	graphical	programs	when	connected	to	attu (yet)
§ so	if	you	want	to	edit	documents,	you	need	to	use	a	text-only	editor

• most	advanced	Unix/Linux	 users	learn	emacs or	vi
§ I	would	recommend	you	try	to	pick	up	the	basics	of	one	of	these.
§ Your	choice!

command description
pico or nano simple	editors
emacs More	advanced	text	editor
vi or vim More	advanced	text	editor



28

Basic Emacs Commands
• C- =	control	key M- =	meta/alt	key
• read	a	file	into	Emacs: C-x	C-f
• save	a	file	back	to	disk: C-x	C-s
• exit	Emacs permanently: C-x	C-c
• search	forward:	 C-s	 search	backward:	 C-r
• scroll	to	next	screen: C-v	 scroll	to	previous	screen: M-v
• Undo: C-x	u

entity	to	move	over	 backward	 forward	

character	 C-b C-f	

word	 M-b M-f	

line	 C-p C-n

go	to	line	beginning/end	 C-a C-e

go	to	buffer	beginning/end M-< M->

https://courses.cs.washington.edu/courses/cse391/18sp/handouts/emacs.pdf



29

Basic Vim Commands
• :w Write	the	current	file	
• :wq Write	the	current	file	and	exit.
• :q!																Quit	without	writing
• To	change	into	insert	mode:	i or	a

§ Use	escape	 to	exit
• search	forward	/,	repeat	the	search	backwards:	N
• Basic	movement:	

§ h	l	k	j	 character	 left,	right;	line	up,	down	(also	arrow	keys)
§ b	w	 word/token	left,	right	
§ ge e	 end	of	word/token	left,	right
§ 0	$ jump	to	first/last	character	on	the	line

• x delete
• u	 undo

https://wiki.gentoo.org/wiki/Vim/Guide and http://tnerual.eriogerg.free.fr/vimqrc.pdf


