
1 of 4

CSE 391, Autumn 2109
Homework 9: Version Control (Git)

Due Tuesday, December 10, 2019, 1:00 PM
This assignment focuses on using Git for version control. You can do this lab from the CSE VM, from attu, or from another
place you have linux and Git installed. For Task 1, you will copy and paste the output from certain git commands into
Gradescope. For Task 2, you will add a file to a shared repository on the CSE GitLab server (you will be graded based on
the presence of this file in the shared repository).
Git is a fairly complex tool that can be used in many different ways. The way we are going to use Git here is similar to the
way Subversion or CVS are used, with a central repository that users push their contributions to. This is a common way
you might use it in a course or for your own projects. But if you run into problems with Git, be aware that doing a web
search for answers could lead you to a solution that refers to a different problem than the one you have. You may find these
two resources describing how Git is used in CSE 331 and CSE 333 useful. The CSE 333 document is shorter, focusses on
the command line, and the “Notes” and “Details” sections are handy.
CSE 331 Documentation on Git: http://courses.cs.washington.edu/courses/cse331/18sp/tools/versioncontrol.html
CSE 333 Git Tutorial focuses on command line only: https://courses.cs.washington.edu/courses/cse333/18sp/git/
For descriptions of origin, master, HEAD and other terms check here: http://schacon.github.io/git/gitglossary.html

Task 0: Getting ready to use Git and the CSE GitLab service
1. Log on to GitLab - All students in CSE 391 have been given access to the CSE GitLab service for this quarter. If you

are a CSE major, you should log on using your CSENetID, otherwise use your UWNetID. Log on to CSE GitLab by
going here: https://gitlab.cs.washington.edu/

2. Add one or more ssh keys to your account – In order to talk to the GitLab service from your computer or attu you
will want to create ssh keys on those computers and copy the public ssh for each computer into your GitLab account.
We suggest you do not add a password, even though the documentation says it is best practice. Read more about this
here: https://gitlab.cs.washington.edu/help/ssh/README.md . The process is also described briefly on slide 18 from
lecture. We suggest you accept the default location for the key and that you do not add a password, meaning you can
just hit return three times.
Once you have created a key on your local machine, next, on GitLab, click on the down arrow next to the circle at the
top right of the screen and select “Settings”. Next, select “SSH Keys” from the left-hand side of the page. Or you may
go directly to the URL: https://gitlab.cs.washington.edu/profile/keys. On your local machine, type: cat
~/.ssh/id_rsa.pub to see your key. Copy and paste the key into the provided text box on GitLab. You can give it
a Title like “attu” or “CSE VM” to identify which computer the key goes with. Click the green button labeled “Add
Key”.

3. Configure Git – Whether you are working on attu or the CSE VM, you will want to configure a few things before you
get started with Git. Slide 19 from lecture gives more info, but basically type these things at your linux prompt:

git config --global user.name "Your Name"

git config --global user.email yourEmail@uw.edu

 If you want to use an editor other than vim for commit messages, you may want to set your default editor, for example
 git config --global core.editor emacs

(Tip: if you find yourself in vim by mistake, use :q (colon, the letter q, then enter) to quit. More tips here.)

You can check what you have set using git config –-list
Note: When you push, you may encounter a message like this when pushing:

warning: push.default is unset; its implicit value is changing in

Git 2.0 from 'matching' to 'simple'.

This new default value in Git 2.0 will be fine. You can make this warning go away by setting push.default to be
the new default in Git 2.0 like this:
git config --global push.default simple

2 of 4

Task 1: Create a Git repository, import and edit files
This task gives you experience creating a Git repo and modifying files from it in a way that you may wish to use to manage
your own individual projects. We suggest you place this repository on CSE GitLab but it will also be acceptable if you
create it elsewhere (we only provide instructions for CSE GitLab). For this task, you will need to cut and paste the output
of several commands into task1.sh.
1. Create a repo on GitLab: Click on the “W Gitlab” icon at the top left of the screen to take you to the Dashboard. Once

at the Dashboard click on the green “New project” button on the upper right hand side of the screen. Make sure your
username is selected in the dropdown in the project URL. Type (do not cut and paste from this document):
cse391-hw09 as the “Project name”. Creating this as a private project (the default) is fine for this task. Hit the green
“Create project” button.

2. Add initial files to the repo: After you have created the repo, the project page will show you customized instructions
for adding your first files to it. The first option (“Create a new repository”) involves cloning the empty repo and adding,
committing, and pushing a README file to the remote repo. The second option (“Existing folder”) is useful if you
already have an existing folder of files that you want to add to the repo you just created. Here we will use the first
option.
Type these commands at a linux prompt in the directory where you would like to copy the (currently empty) repo:
git clone git@gitlab.cs.washington.edu:yourUserID/cse391-hw09.git

cd cse391-HW09

touch README.md

git add README.md

git commit -m "add README"

git push -u origin master

After executing these commands, the directory you are in (named cse391-hw09) is your “working directory” in Git
terminology. Your working directory is where you will edit and create files to add and commit to your local repo. Later
you will push them to the remote repo on GitLab. At this point if you do an ls –a in your working directory you
should see the file README.md (md stands for markdown) and a .git directory that is where your local copy of the
repo lives. You will not cd into the .git directory or modify files in this directory directly. Instead this directory
serves as your local copy of the repository and you will interact with it via Git commands (eg. git add, git
commit). If you go to the GitLab web page for your repo, and refresh, you should see that README.md is now there
since you pushed it to the remote repo.

3. Add a file to your repo: Copy the menu.txt file from the homework website into your working directory. If you are
still in your working directory you can do this using:
wget https://courses.cs.washington.edu/courses/cse391/19au/homework/9/menu.txt

Type git status and notice that menu.txt is shown in red and listed as an “untracked file”. Now we will change
this by asking menu.txt to be tracked with:
git add menu.txt

Typing git status again will show that menu.txt is now shown in green as a new file to be committed. Let’s
commit it to your local repo by typing (do NOT cut and paste!) the following:
git commit -m "Adding menu to repo"

Finally, let’s push the changes in your local copy of the repo to the remote repo on GitLab.
git push

On GitLab, if you refresh the files, you should see that menu.txt is now there. Run git log -1 (one, not el) to
see only the most recent commit. Copy and paste the results of git log -1 into your Gradescope.

4. Edit a file from the repo: In your working directory, edit the file menu.txt and add lines or modify lines already
present in the file. Now issue the command git status. Issue the command git diff to see changes that
appear in your working directory that have not been staged. Copy and paste the output of git diff into
Gradescope.

3 of 4

5. Stage your changes to the repo: Use the appropriate command to add your changes to the staging area. Then type
git status and git diff --cached to see any staged changes. Copy and paste the output of git status
into Gradescope.

6. Commit your changes to your local repo: Use the appropriate command to commit your changes to your local repo.
Don’t forget to use –m to add a one-line commit message or else you will be thrown into an editor to write your
commit message. Copy and paste the output of git status into Gradescope.

7. Push your changes to the remote repo: Use an appropriate command to push your changes to the remote repo. Run
git status to see what it says now. Type git blame menu.txt to see who was responsible for changing each
line of this file when. Copy and paste the output of git blame menu.txt into Gradescope.

8. Before moving on to the next task, feel free to experiment with adding more files, making edits and other commands
such as: status, diff, log, blame. Try git help command for more info on these.

Task 2: Contribute to a shared Git repository on CSE GitLab
This task gives you some experience interacting with a shared Git repository on the CSE GitLab server. In future CSE
courses, you are likely to either 1) have your own individual repo on the CSE GitLab server that you use to get files from
course staff or submit your homework assignments, or 2) share a repo on the CSE GitLab server with one or more other
students who are your partners working on a project. For this task, we have created a single project that ALL the students
in cse391 will share. Clearly this is a much larger group than you are likely to be a part of, but it should work out fine for
the way we will be using the remote repo.
Isn’t it painful how you have to always drop lots of hints about what you would REALLY like to get for your birthday? For
this task we will all contribute to a Git repo where we will register our wish lists via the repo. Follow the instructions below
to see how!
First, Clone a copy of the remote repo – On your machine (e.g. the CSE VM, attu), cd into the directory where you would
like to create your local copy of the repo and execute this command:

git clone git@gitlab.cs.washington.edu:zorahf/cse391-birthdays-19au.git

Now the fun begins! Since the repo is shared by so many people, most changes you make to the repo will require some sort
of merge. Thus if you try to push a file and you get an error, then try pulling using git pull. If you are merely adding a
file with your userID and someone else has added another file, then on the pull you are likely to be thrown into your editor
and asked to enter a commit message explaining why this merge is needed. You can just accept the message that is there by
saving and exiting from the editor. See step 3 below for info on resolving more complex conflicts when they occur. Don’t
forget to push again to really send your changes to the remote repo. Ready? O.k. here are your tasks, get ready for some
merge and conflict fun!
1. Create your wish list: cd into cse391-birthdays-19au (your working directory) and create a new file named

YOUR_CSE_OR_UW_NETID.txt. For example, if your name is Bart Simpson and your CSE NetID is bsimp, create a
file named bsimp.txt. Add your some things you would like to get for your birthday to this file. You can see an
example of such a list in the file brettwo.txt. Once you have created and written this file successfully, add and
commit it to your local copy of the repo and then push it to the remote repo so that it takes its place with the other files
found there. We will grade you on this task by looking at the remote repository and seeing that the file is there.

2. Edit your wish list – After looking at the items on other peoples’ wish lists you realized there were some other things
you would like to add to your list. Edit your wish list to add another item or two. Then add and commit it to your
local copy of the repo and then push it to the remote repo

3. Make changes to a shared file – We have created twelve files, one named for each month, where we want to keep
track of who has a birthday when. Since the birthday files are going to be edited by everyone in the course, you should
be sure to do a pull before you edit the appropriate file. To pull from the remote repo type:
git pull

Then edit the file for your birthday month and add your name to the list in that file. Then add and commit it to your
local repo and push it to the remote repo using:
git push

4 of 4

When you do git push you may have complete success (a call to git status will show that Your branch
is up-to-date with 'origin/master'). Hooray!!

However if you forgot to pull, or if someone edited the same file and pushed it since you last pulled, you may get
a message when you try to push indicating that your changes were rejected, giving you an error that it failed to push
some refs. If you read the “hints” Git prints out they should be useful. It suggests that the repo contains work that you
do not have, likely because someone else has pushed their copy of the same file to the repo.

*** What to do when git push rejects your changes:

Do a git pull. This will bring changes in the remote repo to your local repo. Git will try to merge your
changes with these new changes pulled from the remote repo. Git can merge many changes automatically, but
sometimes it needs help. Two things are likely to happen when you do git pull.

• If Git is able to automatically merge your changes with the new changes: then you will be thrown into

your default editor to either just save and exit, accepting the default merge message, or add something else to
it before exiting. At this point you have committed the merged version of the file to your local repo, but you
will need to try pushing it to the remote repo again. Hopefully this time you will succeed!

• If Git is not able to automatically merge your changes with the new changes: then you will see that the

call to git pull reports there was a CONFLICT and that the “Automatic merge failed; fix
conflicts and then commit the result.” Open up the conflicting file in an editor. When Git detects
a file conflict, it changes the file to include both versions of any conflicting portions (yours and the one from
the repository), in this format:

 <<<<<<< filename
 YOUR VERSION

 =======

 REPOSITORY'S VERSION

 >>>>>>> 4e2b407... -- repository version's revision number

For each conflicting file, edit it to remove the <<<<<<<, =======, and >>>>>>> lines. When repairing a
conflict, do so in such a way that your changes, as well as changes made by all other students, are preserved.
Please do not submit a change to a file that damages or removes changes made by another student. The repo
will keep a record of all actions, so we will be able to tell who has submitted new versions of the file and what
changes were made by each student. (More information about resolving conflicts, here.)
After you are done resolving any conflicts, you will need to add and commit the edited file to your local
repo. When committing, if you do not supply a message using –m at the command line, you will see a default
merge message in your editor which you can accept as is or edit. Finally, try pushing again to the remote
repo.

• Tips:
If you ever run the git status command and see the output "Your branch is ahead of
'origin/master' by N commits", then this means that you have local commits that have not been pushed
to the remote repository yet.

• Git will not allow you to pull updates into your repository while you have unstaged changes. Therefore, you
must stage (git add) and commit all of your changes before pulling.

