
1

CSE 391

Lecture 5

Intro to shell scripting

slides created by Marty Stepp, modified by Jessica Miller & Ruth Anderson

http://www.cs.washington.edu/391/

http://www.cs.washington.edu/391/

2

Lecture summary

• basic script syntax and running scripts

• shell variables and types

• control statements: the for loop

3

Shell scripts

• script: A short program meant to perform a targeted task.

 a series of commands combined into one executable file

• shell script: A script that is executed by a command-line shell.

 bash (like most shells) has syntax for writing script programs

 if your script becomes > ~100-150 lines, switch to a real language

• To write a bash script (in brief):

 type one or more commands into a file; save it

 type a special header in the file to identify it as a script (next slide)

 enable execute permission on the file

 run it!

4

Basic script syntax

#!interpreter

 written as the first line of an executable script; causes a file to be
treated as a script to be run by the given interpreter

• (we will use /bin/bash as our interpreter)

• Example: A script that removes some files and then lists all files:

#!/bin/bash

rm output*.txt

ls -l

5

Running a shell script

• by making it executable (most common; recommended):

chmod u+x myscript.sh

./myscript.sh

 fork a process and run commands in myscript.sh and exit

• by launching a new shell :

bash myscript.sh

 advantage: can run without execute permission (still need read
permission)

• by running it within the current shell:

source myscript.sh

 advantage: any variables defined by the script remain in this shell
(more on variables later)

6

echo

• Example: A script that prints your current directory.

#!/bin/bash
echo "This is my amazing script!"
echo "Your current dir is: $(pwd)"

• Exercise : Write a script that when run on attu does the following:
 clears the screen
 displays the current date/time
 Shows who is currently logged on & info about processor

command description

echo produces its parameter(s) as output
(the println of shell scripting)

-n flag to remove newline (print vs println)

7

Script example

#!/bin/bash
clear # please do not use clear in your hw scripts!
echo "Today's date is $(date)"
echo

echo "These users are currently connected:"
w -h | sort
echo

echo "This is $(uname –s) on a $(uname –m) processor."
echo

echo "This is the uptime information:"
uptime
echo
echo "That's all folks!"

8

Comments

comment text

 bash has only single-line comments; there is no /* ... */ equivalent

• Example:

#!/bin/bash
Leonard's first script ever
by Leonard Linux
echo "This is my amazing script!"
echo "The time is: $(date)"

This is the part where I print my current directory
echo “Current dir is: $(pwd)"

9

Shell variables

• name=value (declaration)

 must be written EXACTLY as shown; no spaces allowed

 often given all-uppercase names by convention

 once set, the variable is in scope until unset (within the current shell)

AGE=64
NAME="Michael Young"

• $name (usage)

echo "$NAME is $AGE years old"

Produces:
Michael Young is 64 years old

10

Common errors

• if you misspell a variable's name, a new variable is created

NAME=Ruth
...
Name=Rob # oops; meant to change NAME

• if you use an undeclared variable, an empty value is used

echo "Welcome, $name" # Welcome,

• when storing a multi-word string, must use quotes

NAME=Ruth Anderson # Won’t work
NAME=“Ruth Anderson" # $NAME is Ruth Anderson

11

More Errors…

• Using $ during assignment or reassignment

 $mystring=“Hi there” # error

 mystring2=“Hello”

 …

 $mystring2=“Goodbye” # error

• Forgetting echo to display a variable

 $name

 echo $name

12

Capture command output

variable=$(command)

 captures the output of command into the given variable

• Simple Example:

FILE=$(ls *.txt)
echo $FILE

• More Complex Example:

FILE=$(ls -1 *.txt | sort | tail –n 1)
echo "Your last text file is: $FILE"

 What if we use double quotes instead?

13

Double vs. Single quotes

Double quotes - Variable names are expanded & $() work

NAME="Bugs Bunny"
echo "Hi $NAME! Today is $(date)"

Produces:
Hi Bugs Bunny! Today is Tues Apr 25 13:37:45 PDT 2017

Single quotes – don’t expand variables or execute commands in $()

echo 'Hi $NAME! Today is $(date)'

Produces:
Hi $NAME! Today is $(date)

Tricky Example:
 STAR=*

• echo "You are a $STAR"

• echo 'You are a $STAR'

• echo You are a $STAR

Lesson: When referencing a variable, it is

good practice to put it in double quotes.

14

Types and integers

• most variables are stored as strings

 operations on variables are done as string operations, not numeric

• to instead perform integer operations:
x=42
y=15
let z="$x + $y" # 57

• integer operators: + - * / %

 bc command can do more complex expressions

• if a non-numeric variable is used in numeric context, you'll get 0

15

Bash vs. Java

x=3

 x vs. $x vs. "$x" vs. '$x' vs. \'$x\' vs. 'x'

Java Bash

String s = "hello"; s=hello

System.out.println("s"); echo s

System.out.println(s); echo $s

s = s + "s"; // "hellos" s=${s}s

String s2 = "25";
String s3 = "42";
String s4 = s2 + s3; // "2542"
int n = Integer.parseInt(s2)

+ Integer.parseInt(s3); // 67

s2=25
s3=42
s4=$s2$s3
let n="$s2 + $s3"

16

Special variables

 these are automatically defined for you in every bash session

• Exercise : Change your attu prompt to look like this:

jimmy@mylaptop:$

 See man bash for more info (search on PROMPTING)

variable description

$DISPLAY where to display graphical X-windows output

$HOSTNAME name of computer you are using

$HOME your home directory

$PATH list of directories holding commands to execute

$PS1 the shell's command prompt string

$PWD your current directory

$SHELL full path to your shell program

$USER your user name

17

$PATH

• When you run a command, the shell looks for that program in all
the directories defined in $PATH

• Useful to add commonly used programs to the $PATH

• Exercise: modify the $PATH so that we can directly run our shell
script from anywhere

 echo $PATH

 PATH=$PATH:/homes/iws/rea

• What happens if we clear the $PATH variable?

18

set, unset, and export

 typing set or export with no parameters lists all variables

 Exercise: set a local variable, and launch a new bash shell

• Can the new shell see the variable?

• Now go back and export and launch a shell again. Can you see it now?

shell command description

set sets the value of a variable
(not usually needed; can just use x=3 syntax)

unset deletes a variable and its value

export sets a variable and makes it visible to any
programs launched by this shell

readonly sets a variable to be read-only
(so that programs launched by this shell cannot
change its value)

19

Console I/O

 variables read from console are stored as strings

• Example:

#!/bin/bash

read -p "What is your name? " name

read -p "How old are you? " age

printf "%10s is %4s years old" $name $age

shell command description

read reads value from console and stores it into a variable

echo prints output to console

printf prints complex formatted output to console

20

Command-line arguments

 Example.sh:

#!/bin/bash

echo “Name of script is $0”

echo “Command line argument 1 is $1”

echo “there are $# command line arguments: $@”

•Example.sh argument1 argument2 argument3

variable description

$0 name of this script

$1, $2, $3, ... command-line arguments

$# number of arguments

$@ array of all arguments

21

for loops

for name in value1 value2 ... valueN; do
commands

done

• Note the semi-colon after the values!

• the pattern after in can be:
 a hard-coded set of values you write in the script
 a set of file names produced as output from some command
 command line arguments: $@

• Exercise: create a script that loops over every .txt file in the
directory, renaming the file to .txt2

for file in *.txt; do
mv $file ${file}2

done

22

for loop examples

for val in red blue green; do
echo "val is: $val"

done

for val in $@; do
echo "val is: $val"

done

for val in $(seq 4); do
echo "val is: $val"

done

command description

seq outputs a sequence of numbers

23

Exercise

• Write a script createhw.sh that creates directories named hw1,
hw2, ... up to a maximum passed as a command-line argument.

$./createhw.sh 8

 Copy criteria.txt into each assignment i as criteria(2*i).txt

 Copy script.sh into each, and run it.

• output: Script running on hw3 with criteria6.txt ...

24

Exercise solution

#!/bin/bash
Creates directories for a given number of assignments.

for num in $(seq $1); do
let CRITNUM="2 * $num"
mkdir "hw$num"
cp script.sh "hw$num/"
cp criteria.txt "hw$num/criteria$CRITNUM.txt"
echo "Created hw$num."
cd "hw$num/"
bash ./script.sh
cd ..

done

