
1

CSE 391

Lecture 6

bash scripting continued; remote X windows; unix tidbits

slides created by Marty Stepp, modified by Jessica Miller and Ruth Anderson

http://www.cs.washington.edu/391/

http://www.cs.washington.edu/391/

2

Lecture summary

• more shell scripting

 if/else

 while/until

 select/case

 advanced: arrays and functions

• various new Unix/Linux commands

 newlines in Unix vs Windows

 Remote X windows

 file archiving and compression

3

Exit Status

• Every Linux command returns an integer code when it finishes,
called its “exit status”

 0 usually* denotes success, or an OK exit status

 Anything other than 0 (1 to 255) usually denotes an error

• You can return an exit status explicitly using the exit statement

• You can check the status of the last command executed in the
variable $?

$ cat someFileThatDoesNotExist.txt
$ echo $?
1 # “Failure”
$ ls
$ echo $?
0 # “Success”

* One example exception: diff returns “0” for no differences,

“1” if differences found, “2” for an error such as invalid filename argument

4

if/else
if [condition]; then # basic if

commands
fi

if [condition]; then # if / else if / else
commands1

elif [condition]; then
commands2

else
commands3

fi

• The [] syntax is actually shorthand for a shell command called “test”
(Try: “man test”)

• there MUST be spaces as shown:
if space [space condition space]

• include the semi-colon after] (or put “then” on the next line)

5

The test command

$ test 10 –lt 5
$ echo $?
1 # “False”, “Failure”
$ test 10 –gt 5
$ echo $?
0 # “True”, “Success”

• Another syntax for the test command:
Don’t forget the space after [and before]

$ [10 –lt 5]
$ echo $?
1 # “False”, “Failure”
$ [10 –gt 5]
$ echo $?
0 # “True”, “Success”

6

test operators

if [$USER = “husky14"]; then
echo ‘Woof! Go Huskies!’

fi

LOGINS=$(w -h | wc -l)
if [$LOGINS -gt 10]; then

echo ‘attu is very busy right now!’
fi

comparison operator description

=, !=, \<, \> compares two string variables

-z, -n tests if a string is empty (zero-length) or not empty
(nonzero-length)

-lt, -le, -eq,

-gt, -ge, -ne

compares numbers; equivalent to Java's

<, <=, ==, >, >=, !=

-e, -f, -d tests whether a given file or directory exists

-r, -w, -x tests whether a file exists and is readable/writable/executable

*Note: man test will show other operators.

7

More if testing

alert user if running >= 10 processes when
attu is busy (>= 5 users logged in)
LOGINS=$(w -h | wc -l)
PROCESSES=$(ps -u $USER | wc -l)
if [$LOGINS -ge 5 -a $PROCESSES -gt 10]; then

echo "Quit hogging the server!"
fi

compound comparison operators description

if [expr1 -a expr2]; then ...

if [expr1] && [expr2]; then ...

and

if [expr1 -o expr2]; then ...

if [expr1] || [expr2]; then ...

or

if [! expr]; then ... not

8

safecopy Exercise

• Write a script called safecopy that will mimic the behavior of cp –i
where from is a filename and to is a filename:

$ cp –i from.txt to.txt
Do you want to overwrite to.txt? (yes/no)

$./safecopy.sh from.txt to.txt
Do you want to overwrite to.txt? (yes/no)

9

safecopy Exercise Solution

#!/bin/bash

FROM=$1

TO=$2

if [-e $TO]; then

read -p "Do you want to overwrite $TO?" ANSWER

if [$ANSWER = "yes"]; then

cp $FROM $TO

fi

else

cp $FROM $TO

fi

10

BMI Exercise

• Write a program that computes the user's body mass index (BMI) to
the nearest integer, as well as the user's weight class:

$./bmi.sh
Usage: ./bmi.sh weight height

$./bmi.sh 112 72
Your Body Mass Index (BMI) is 15
Here is a sandwich; please eat.

$./bmi.sh 208 67
Your Body Mass Index (BMI) is 32
There is more of you to love.

BMI Weight class

 18 underweight

18 - 24 normal

25 - 29 overweight

 30 obese

703
2


height

weight
BMI

11

BMI Exercise solution

#!/bin/bash
Body Mass Index (BMI) calculator
if [$# -lt 2]; then

echo "Usage: $0 weight height"
exit 1 # 1 indicates failure, 0 for success

fi

let H2=“$2 * $2”
let BMI="703 * $1 / $H2"
echo "Your Body Mass Index (BMI) is $BMI"
if [$BMI -le 18]; then

echo "Here is a sandwich; please eat."
elif [$BMI -le 24]; then

echo "You're in normal weight range."
elif [$BMI -le 29]; then

echo "You could stand to lose a few."
else

echo "There is more of you to love."
fi

12

Common errors

• [: -eq: unary operator expected

 you used an undefined variable in an if test

• [: too many arguments

 you tried to use a variable with a large, complex value (such as multi-
line output from a program) as though it were a simple int or string

• let: syntax error: operand expected (error token is " ")

 you used an undefined variable in a let mathematical expression

13

while and until loops

while [condition]; do # go while condition is true

commands
done

until [condition]; do # go while condition is false

commands
done

14

While exercise

• Prompt the user for what they would like to do. While their answer
is “open the pod bay doors” tell them that you cannot do
that and prompt for another action.

15

While Exercise solution

#!/bin/bash
What would you like to do?
read -p "What would you like me to do? " ACTION
echo "You said: $ACTION"
while ["$ACTION" = "open the pod bay doors"]; do

echo "I'm sorry Dave, I'm afraid I can't do that."
read -p "What would you like me to do? " ACTION
echo "You said: $ACTION"

done
echo "Bye"

The quotes around “$ACTION” are important here,

try removing them and see what happens.

16

select and case
• Bash Select statement:

PS3=prompt # Special variable* for the select prompt

select choice in choices; do

commands

break # Break, otherwise endless loop

done

• Bash Case statement:

case EXPRESSION in

CASE1) COMMAND-LIST;;

CASE2) COMMAND-LIST;;

...

CASEN) COMMAND-LIST;;

esac
*see lecture 5

17

Select Example

PS3="What is your favorite food? " # Goes with the select stmt

echo "Welcome to the select example!"

echo "It prints out a list of choices"

echo "but does nothing interesting with the answer."

select CHOICE in "pizza" "sushi" "oatmeal" "broccoli"; do

echo "You picked $CHOICE"

break

done

echo “For the select statement, you pick a number as your choice."

18

Case Example

echo "Welcome to the case example!"

echo "Without a select statement, you must get the spelling/case exact."

read -p "What format do you prefer? (tape/cd/mp3/lp) " FORMAT

echo "You said $FORMAT"

case "$FORMAT" in

"tape") echo "no random access!";;

"cd") echo "old school";;

"mp3") echo "how modern";;

"lp") echo "total retro";;

esac

19

select/case Exercise

• Have the user select their favorite kind of music, and output a
message based on their choice

20

select/case Exercise Solution

PS3="What is your favorite kind of music? "

select CHOICE in "rock" "pop" "dance" "reggae"; do

case "$CHOICE" in

"rock") echo "Rock on, dude.";;

"pop") echo "Top 100 is called that for a reason.";;

"dance") echo "Let's lay down the Persian!";;

"reggae") echo "Takin' it easy...";;

*) echo "come on...you gotta like something!";;

esac

break

done

21

Arrays

name=(element1 element2 ... elementN)

name[index]=value # set an element

$name # get first element

${name[index]} # get an element

${name[*]} # elements sep.by spaces

${#name[*]} # array's length

 arrays don't have a fixed length; they can grow as necessary

 if you go out of bounds, shell will silently give you an empty string

• you don't need to use arrays in assignments in this course

22

Functions

function name() { # declaration
commands # ()’s are optional

}

name # call

 functions are called simply by writing their name (no parens)

 parameters can be passed and accessed as $1, $2, etc. (icky)

• you don't need to use functions in assignments in this course

23

Other useful tidbits

24

Newlines in Windows/Unix

• Early printers had two different command characters:

 Carriage return (\r) – move the print head back to the left margin

 Line feed (\n) – move the paper to the next line

 Both occurred when you wanted a “newline”

• As time went on, various combos were used to signify a “newline”

 Windows typically uses the (\r\n) version

 MacOS uses (\r)

 Unix uses (\n)

• Can cause problems when displaying text files created on one
system on another system

 Most modern text editors recognize both and do the right thing

 Can convert if needed:

•dos2unix and unix2dos commands

25

Remote X display

Normally, you can’t run graphical programs on remote servers (e.g. attu)

• however, if you connect your SSH with the -X parameter, you can!

 the X-Windows protocol is capable of displaying programs remotely

ssh -X attu.cs.washington.edu

• Other options (-Y for “Trusted” mode, -C for compressed, see online)

Then try:
xeyes, xterm, xclock

26

Tar slides – from lecture 4

27

tar files

 Originally used to create “tape archive” files

 Combines multiple files into a single .tar file

 You probably always want to use –f option and IT SHOULD COME LAST

• To create a single file from multiple files:

$ tar -cf filename.tar stuff_to_archive

 -c creates an archive

 -f read to/from a file

 stuff_to_archive - can be a list of filenames or a directory

• To extract files from an archive:

$ tar -xf filename.tar

 -x extracts files from an archive

description

tar create or extract .tar archives (combines multiple files into one .tar file)

28

Compressed files

• To compress a file:

$ gzip filename produces: filename.gz

• To uncompress a file:

$ gunzip filename.gz produces: filename

Similar for zip, bzip2. See man pages for more details.

command description

zip, unzip create or extract .zip compressed archives

gzip, gunzip GNU free compression programs (single-file)

bzip2, bunzip2 slower, optimized compression program (single-file)

29

.tar.gz archives

• Many Linux programs are distributed as .tar.gz archives (sometimes
called .tgz)

• You could unpack this in two steps:

1. gzip foo.tar.gz produces: foo.tar

2. tar –xf foo.tar extracts individual files

• You can also use the tar command to create/extract compressed
archive files all in one step:

$ tar -xzf filename.tar.gz

 -x extracts files from an archive

 -z filter the archive through gzip (compress/uncompress it)

 -f read to/from a file

Handy tip: You can use the “file” command to see what type a file is,

just changing the file extension on a file does not change its type.

30

tar examples

You can combine options (-v, -z, etc.) various ways:

Create a single .tar archive file from multiple files (without compression):

$ tar -cvf filename.tar stuff_to_archive

 -c creates an archive file called filename.tar

 -v verbosely list the files processed

 -f read to/from a file (as opposed to a tape archive)

 stuff_to_archive - can be filenames or a directory

Add –z option and use filename.tar.gz to use compression:

$ tar -cvzf filename.tar.gz stuff_to_archive

31

tar

