
1

CSE 391

Lecture 8

Large Program Management: Make; Ant

slides created by Marty Stepp, modified by Jessica Miller and Ruth Anderson

http://www.cs.washington.ed0u/391/

http://www.cs.washington.edu/391/

2

Motivation

• single-file programs do not work well when code gets large

 compilation can be slow

 hard to collaborate between multiple programmers

 more cumbersome to edit

• larger programs are split into multiple files

 each file represents a partial program or module

 modules can be compiled separately or together

 a module can be shared between multiple programs

• but now we have to deal with all these files just to build our
program…

3

Compiling: Java

• What happens when you compile a Java program?

 $ javac Example.java Example.class

Answer: It produces a .class file.

 Example.java is compiled to create Example.class

• How do you run this Java program?

 $ java Example

produces

4

Compiling: C

• To compile a C program called source.c, type:

gcc -o target source.c target

 (where target is the name of the executable program to build)

 the compiler builds an actual executable file (not a .class like Java)

 Example: gcc -o hi hello.c

Compiles the file hello.c into an executable called “hi”

• To run your program, just execute that file:

 Example: ./hi

command description

 gcc GNU C compiler

produces

5

Object files (.o)

• A .c file can also be compiled into an object (.o) file with -c :

$ gcc -c part1.c part1.o
$ ls
part1.c part1.o part2.c

 a .o file is a binary “blob” of compiled C code that cannot be directly
executed, but can be directly linked into a larger executable later

• You can compile and link a mixture of .c and .o files:

$ gcc -o myProgram part1.o part2.c myProgram

Avoids recompilation of unchanged partial program files (e.g. part1.o)

produces

produces

6

Header files (.h)

• header : A C file whose only purpose is to be #included
(#include is like java import statement)
 generally a filename with the .h extension
 holds shared variables, types, and function declarations
 similar to a java interface: contains function declarations but not

implementations

• key ideas:
 every name.c intended to be a module (not a stand alone program)

has a name.h
 name.h declares all global functions/data of the module
 other .c files that want to use the module will #include name.h

7

Compiling large programs

• Compiling multi-file programs repeatedly is cumbersome:

$ gcc -o myprogram file1.c file2.c file3.c

• Retyping the above command is wasteful:

 for the developer (so much typing)

 for the compiler (may not need to recompile all; save them as .o)

• Improvements:

 use up-arrow or history to re-type compilation command for you

 use an alias or shell script to recompile everything

 use a system for compilation/build management, such as make

8

make

• make : A utility for automatically compiling ("building") executables
and libraries from source code.

 a very basic compilation manager

 often used for C programs, but not language-specific

 primitive, but still widely used due to familiarity, simplicity

 similar programs: ant, maven, IDEs (Eclipse), ...

• Makefile : A script file that defines rules for what must be compiled
and how to compile it.

 Makefiles describe which files depend on which others, and how to
create / compile / build / update each file in the system as needed.

9

Dependencies

• dependency : When a file relies on the contents of another.
 can be displayed as a dependency graph
 to build main.o, we need data.h, main.c, and io.h
 if any of those files is updated, we must rebuild main.o
 if main.o is updated, we must update project1

Compiling (gcc –c)

Linking

10

Makefile rule syntax

target : source1 source2 ... sourceN
 command
 command
 ...

 source1 through sourceN are dependencies for building target
 A source is a file that is used as input to create the target.

(Sources are sometimes called prerequisites.)
 A target often depends on several sources.
 Make will execute the commands in order

(Newer GNU documentation calls the commands a recipe.)

Example:
 myprogram : file1.c file2.c file3.c
 gcc -o myprogram file1.c file2.c file3.c

 this is a tab THIS IS NOT spaces!!

 The command line must be indented by a single tab

• not by spaces; NOT BY SPACES! SPACES WILL NOT WORK!

11

Running make
$ make target

 uses the file named Makefile in current directory

 Finds a rule in Makefile for building target and follows it

• if the target file does not exist, or if it is older than any of its sources,
its commands will be executed

• variations:

$ make

 builds the first target in the Makefile

$ make -f makefilename
$ make -f makefilename target

 uses a makefile other than Makefile

12

myprogram : file1.c file2.c file3.c
 gcc -o myprogram file1.c file2.c file3.c

When you type “make”:

 if myprogram does not exist, then it will execute the command:
gcc -o myprogram file1.c file2.c file3.c
(Which will create a file called “myprogram”)

 if myprogram does exist , then its timestamp will be compared to the
timestamps on file1.c, file2.c, and file3.c
If any of the sources have been modified since myprogram was
created, the gcc command will be run to update myprogram.

 If any of the sources were the target of another rule in the makefile
(e.g. file1.o), then the timestamps on its dependencies would be
checked recursively and rebuilt before rebuilding myprogram

How does make process rules?

13

aprogram : foo.o bar.o
 gcc -o aprogram foo.o bar.o

foo.o: foo.c
 gcc -c foo.c

bar.o: bar.c
 gcc -c bar.c

When you type “make”:

 foo.o and bar.o will be updated if needed (their rules will be
consulted and the timestamps on foo.c and bar.c will be checked).

 if aprogram does exist , then its timestamp will be compared to the
timestamps on foo.o and bar.o
If foo.o and bar.o have been modified since aprogram was
created, the gcc command will be run to update aprogram.

Another example

14

Making a Makefile

• Exercise: Create a basic Makefile to build project1

 Basic works, but is wasteful. What happens if we change io.c?

• everything is recompiled. On a large project, this could be a huge waste

15

Making a Makefile

• Exercise: Create a basic Makefile to build project1

 Basic works, but is wasteful. What happens if we change io.c?

• everything is recompiled.

• On a large project, this could be a huge waste

 Augment the makefile to make use of precompiled object (.o) files
and dependencies

• by adding additional targets, we can avoid unnecessary re-compilation

16

Rules that don’t create their target

A rule that creates its target
myprog: file1.o file2.o file3.o
 gcc -o myprog file1.o file2.o file3.o

This rule does not create a file named “clean”
clean:
 rm file1.o file2.o file3.o myprog

• make assumes that a rule's command will build/create its target

 If the target is not present, make will execute the commands!

 Otherwise it compares the timestamps of the target to its dependences,
recursively checking timestamps on the dependencies dependencies etc.

 if your rule does not actually create its target, the target will never exist, so
the rule will always execute its commands (e.g. clean above)

 make clean is a common convention for removing all generated files

 Other things you may see in makefiles:
http://www.gnu.org/software/make/manual/html_node/Phony-Targets.html#Phony-Targets

http://www.gnu.org/software/make/manual/html_node/Force-Targets.html#Force-Targets

http://www.gnu.org/software/make/manual/html_node/Phony-Targets.html#Phony-Targets
http://www.gnu.org/software/make/manual/html_node/Phony-Targets.html#Phony-Targets
http://www.gnu.org/software/make/manual/html_node/Phony-Targets.html#Phony-Targets
http://www.gnu.org/software/make/manual/html_node/Phony-Targets.html#Phony-Targets
http://www.gnu.org/software/make/manual/html_node/Phony-Targets.html#Phony-Targets
http://www.gnu.org/software/make/manual/html_node/Phony-Targets.html#Phony-Targets
http://www.gnu.org/software/make/manual/html_node/Phony-Targets.html#Phony-Targets
http://www.gnu.org/software/make/manual/html_node/Phony-Targets.html#Phony-Targets
http://www.gnu.org/software/make/manual/html_node/Force-Targets.html#Force-Targets
http://www.gnu.org/software/make/manual/html_node/Force-Targets.html#Force-Targets
http://www.gnu.org/software/make/manual/html_node/Force-Targets.html#Force-Targets
http://www.gnu.org/software/make/manual/html_node/Force-Targets.html#Force-Targets
http://www.gnu.org/software/make/manual/html_node/Force-Targets.html#Force-Targets
http://www.gnu.org/software/make/manual/html_node/Force-Targets.html#Force-Targets

17

Rules with no commands

This rule has no commands
all: myprog myprog2

myprog: file1.o file2.o file3.o
 gcc -o myprog file1.o file2.o file3.o

myprog2: file4.c
 gcc -o myprog2 file4.c
...

• The all rule has no commands, but depends on myprog & myprog2

 typing make all will ensure that myprog, myprog2 are up to date
because their dependencies will be checked recursively and updated as
needed

 Having an all rule is also a common convention, and is often put as the
first rule in a file, so that just typing make without giving a target will
build “everything” (the dependencies of all)

18

Variables

NAME = value (declare)
$(NAME) (use)

Example Makefile:

OBJFILES = file1.o file2.o file3.o
PROGRAM = myprog

$(PROGRAM): $(OBJFILES)
 gcc -o $(PROGRAM) $(OBJFILES)

clean:
 rm $(OBJFILES) $(PROGRAM)

• variables make it easier to change one option throughout the file

 also makes the makefile more reusable for another project

19

More variables

Example Makefile:

OBJFILES = file1.o file2.o file3.o
PROGRAM = myprog
CC = gcc
CFLAGS = -g –Wall

$(PROGRAM): $(OBJFILES)
 $(CC) $(CFLAGS) -o $(PROGRAM) $(OBJFILES)

• many makefiles create variables for the compiler, flags, etc.

 this can be overkill, but you will see it "out there"

20

Special variables

$@ the current target file

$^ all sources listed for the current target

$< the first (left-most) source for the current target

 (there are other special variables*)

Example Makefile:
myprog: file1.o file2.o file3.o
 gcc $(CFLAGS) -o $@ $^

file1.o: file1.c file1.h file2.h
 gcc $(CFLAGS) -c $<

• Exercise: change our hello Makefile to use variables for the object
files and the name of the program

*http://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html#Automatic-Variables

http://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html#Automatic-Variables

21

Pattern Rules

• Rather than specifying individually how to convert every .c file into
its corresponding .o file, you can make use of pattern rules:

conversion from .c to .o
%.o: %.c
 $(CC) -c $(CFLAGS) $< -o $@

 This means: “To create filename.o from filename.c, run
gcc -c -g -Wall filename.c -o filename.o “

 The rule listed above is actually pre-defined in make, so you do
not need to include it in your makefile. You can add additional
dependencies by adding rules with no commands:

main.o: io.h data.h
data.o: data.h

Note, we can omit data.c as a source for data.o as long as
we do not list commands for creating data.o

https://www.gnu.org/software/make/manual/html_node/make-Deduces.html#make-Deduces

22

Old-Fashioned Suffix Rules

 In older Makefiles, you may see rules like the one below, which
have a similar effect:

.c.o:
 $(CC) –c $(CFLAGS) -c $< -o $@

 This means: “To create filename.o from filename.c, run

gcc -c -g -Wall -c filename.c -o filename.o “

23

Aside: make Exercise

• figlet : program for displaying large ASCII text (like banner).

 http://freecode.com/projects/figlet

• Download a piece of software and compile it with make:

 download .tar.gz file

 un-tar it

 look at README file to see how to compile it

 (sometimes) run ./configure

• for cross-platform programs; sets up make for our operating system

 run make to compile the program

 execute the program

http://freecode.com/projects/figlet

24

What about Java?

• Create Example.java that uses a class MyValue in MyValue.java

 Compile Example.java and run it

• javac automatically found and compiled MyValue.java

 Now, alter MyValue.java

• Re-compile Example.java… does the change we made to MyValue
propagate?

• Yep! javac follows similar timestamping rules as the makefile
dependencies. If it can find both a .java and a .class file, and the .java is
newer than the .class, it will automatically recompile

• But be careful about the depth of the search...

• But, this is still a simplistic feature. Ant is a commonly used build
tool for Java programs giving many more build options.

25

Ant

• Similar idea to Make

• Ant uses a build.xml file instead of a Makefile
<project>
 <target name=“name”>
 tasks
 </target>

 <target name=“name”>
 tasks
 </target>

</project>

• Tasks can be things like:

 <javac … />

 <mkdir … />

 <delete … />

 A whole lot more…http://ant.apache.org/manual/tasksoverview.html

http://ant.apache.org/manual/tasksoverview.html

26

Ant Example

• Create an Ant file to compile our Example.java program

• To run ant (assuming build.xml is in the current directory):

$ ant targetname

• For example, if you have targets called clean and compile:

$ ant clean

$ ant compile

Refer to: http://ant.apache.org/manual/tasksoverview.html

for more information on Ant tasks and their attributes.

http://ant.apache.org/manual/tasksoverview.html

27

Example build.xml file

<!-- Example build.xml file -->

<!-- Homer Simpson, cse391 -->

<project>

 <target name="clean">

 <delete dir="build"/>

 </target>

 <target name="compile">

 <mkdir dir="build/classes"/>

 <javac srcdir="src" destdir="build/classes"/>

 </target>

</project>

28

Some useful Ant tasks

• An overview:

• http://ant.apache.org/manual/tasksoverview.html

• Compiling java programs:

 http://ant.apache.org/manual/Tasks/javac.html

• Running java programs:

 http://ant.apache.org/manual/Tasks/java.html

• Creating directories:

 http://ant.apache.org/manual/Tasks/mkdir.html

• Deleting files:

 http://ant.apache.org/manual/Tasks/delete.html

http://ant.apache.org/manual/tasksoverview.html
http://ant.apache.org/manual/tasksoverview.html
http://ant.apache.org/manual/tasksoverview.html
http://ant.apache.org/manual/Tasks/javac.html
http://ant.apache.org/manual/Tasks/javac.html
http://ant.apache.org/manual/Tasks/javac.html
http://ant.apache.org/manual/Tasks/java.html
http://ant.apache.org/manual/Tasks/java.html
http://ant.apache.org/manual/Tasks/java.html
http://ant.apache.org/manual/Tasks/mkdir.html
http://ant.apache.org/manual/Tasks/mkdir.html
http://ant.apache.org/manual/Tasks/mkdir.html
http://ant.apache.org/manual/Tasks/delete.html
http://ant.apache.org/manual/Tasks/delete.html

29

Automated Build Systems

• Fairly essential for any large programming project

 Why? Shell scripts instead? What are these tools aiming to do?

 Is timestamping the right approach for determining “recompile”?

 What about dependency determination?

 What features would you want from an automated build tool?

 Should “building” your program also involve non-syntactic checking?

• Ant can run JUnit tests…

30

Making a Makefile

courtesy XKCD

