

CSE 390Z: Mathematics for Computation Workshop

Week 6 Workshop Solutions

Conceptual Review

(a) Set Operations and Comparisons

Set Equality: $A = B := \forall x(x \in A \leftrightarrow x \in B)$

Subset: $A \subseteq B := \forall x(x \in A \rightarrow x \in B)$

Union: $A \cup B := \{x : x \in A \vee x \in B\}$

Intersection: $A \cap B := \{x : x \in A \wedge x \in B\}$

Set Difference: $A \setminus B = A - B := \{x : x \in A \wedge x \notin B\}$

Set Complement: $\overline{A} = A^C := \{x : x \notin A\}$

Powerset: $\mathcal{P}(A) := \{B : B \subseteq A\}$

Cartesian Product: $A \times B := \{(a, b) : a \in A, b \in B\}$

(b) Set Builder Notation

Filter: $S := \{x \in U : P(x)\}$

Translation: S is all the things in U that satisfy $P(x)$.

Map: $T := \{f(x) : x \in U\}$

Translation: T is all output values from the function $f(x)$ when the input is something from U .

The $:$ is read as "such that". It is also common to use $|$ instead of $:$. When using set builder notation, the stuff before the $:$ (or $|$) is the stuff in the set. The stuff after the $:$ (or $|$) are requirements that stuff must fulfill to be in the set.

(c) How do we prove that for sets A and B , $A \subseteq B$?

Solution:

Let $x \in A$ be arbitrary... thus $x \in B$. Since x was arbitrary, we have proven, by the definition of subset, that $A \subseteq B$.

(d) What are two ways we can prove that for sets A and B , $A = B$?

Solution:

Use two subset proofs to show that $A \subseteq B$ and $B \subseteq A$. OR

Using a chain of equivalences (This is the preferred method when A and B are defined in terms of set operations):

Let x be an arbitrary <<thing in the domain>>

The stated biconditional holds since

$$\begin{aligned} x \in A &\equiv << \text{replace set operations with logical operators} >> \\ &\equiv << \text{apply propositional logic equivalences} >> \\ &\equiv << \text{replace logical operators with set operations} >> \\ &\equiv x \in B \end{aligned}$$

Since x was arbitrary, we have proven, by the definition of set equality, that $A = B$.

1. A Basic Subset Proof

Let A, B be sets. Consider the following claim:

$$A \cap B \subseteq A \cup B$$

(a) Write a **formal proof** that the claim holds. Use cozy-style rules for applying definitions. For example, You can replace $A \subseteq B$ by $\forall x(x \in A \rightarrow x \in B)$ with "Def of Subset" and the reverse with "Undef Subset".

Solution:

Let x be arbitrary

1.1.1 $x \in A \cap B$

Assumption

1.1.2 $x \in A \wedge x \in B$

Def of Intersection: 1.1.1

1.1.3 $x \in A$

Elim \wedge : 1.1.2

1.1.4 $x \in A \vee x \in B$

Intro \vee 1.1.3

1.1.5 $x \in A \cup B$

Undef Union 1.1.4

1.1 $x \in A \cap B \rightarrow x \in A \cup B$

Direct Proof

1. $\forall x, x \in A \cap B \rightarrow x \in A \cup B$

Intro \forall

2. $A \cap B \subseteq A \cup B$

Undef Subset: 1

(b) Translate your formal proof to an **English proof**. You may be surprised by how short your proof is!

Solution:

Let $x \in A \cap B$ be arbitrary. Then by definition of intersection, $x \in A$ and $x \in B$. Since $x \in A$, we have $x \in A$ or $x \in B$. Then by definition of union, $x \in A \cup B$. Since x was arbitrary, this shows that $A \cap B \subseteq A \cup B$.

2. Set Equality Proof

(a) Write an English proof to show that $A \cap (A \cup B) \subseteq A$ for sets A, B .

Solution:

Let x be an arbitrary member of $A \cap (A \cup B)$. Then by definition of intersection, $x \in A$ and $x \in A \cup B$. So certainly, $x \in A$. Since x was arbitrary, we have shown that $A \cap (A \cup B) \subseteq A$ by definition of subset.

(b) Write an English proof to show that $A \subseteq A \cap (A \cup B)$ for sets A, B .

Solution:

Let $y \in A$ be arbitrary. Since $y \in A$, we have $y \in A$ or $y \in B$. Then by definition of union, $y \in A \cup B$. Since $y \in A$ and $y \in A \cup B$, by definition of intersection, $y \in A \cap (A \cup B)$. Since y was arbitrary, we have shown that $A \subseteq A \cap (A \cup B)$.

(c) Combine part (a) and (b) to conclude that $A \cap (A \cup B) = A$ for sets A, B .

Solution:

Since $A \cap (A \cup B) \subseteq A$ and $A \subseteq A \cap (A \cup B)$, we have shown that $A \cap (A \cup B) = A$.

(d) Re-write this proof using the Meta-Theorem template from lecture (i.e., using a chain of equivalences instead of two subset proofs).

Solution:

Let x be arbitrary. The biconditional $\forall x(x \in A \cap (A \cup B) \leftrightarrow x \in A)$ holds since

$$\begin{aligned} x \in A \cap (A \cup B) &\equiv (x \in A) \wedge (x \in A \cup B) && \text{Def of Intersection} \\ &\equiv (x \in A) \wedge (x \in A \vee x \in B) && \text{Def of Union} \\ &\equiv x \in A && \text{Absorption} \end{aligned}$$

Since x was arbitrary, we have proven, by definition of set equality, that $A \cap (A \cup B) = A$.

3. Subsets

Let A, B, C be sets. Consider the following claim:

$$A \subseteq C \text{ follows from } A \subseteq B \text{ and } B \subseteq C$$

(a) Write a **formal proof** that the claim holds:

Solution:

1. $A \subseteq B$	Given
2. $B \subseteq C$	Given
3. $\forall x, x \in A \rightarrow x \in B$	Def of Subset: 1
4. $\forall x, x \in B \rightarrow x \in C$	Def of Subset: 2
Let x be arbitrary.	
5.1.1 $x \in A$	Assumption
5.1.2 $x \in A \rightarrow x \in B$	Elim \forall : 3
5.1.3 $x \in B$	Modus Ponens: 5.1.1, 5.1.2
5.1.4 $x \in B \rightarrow x \in C$	Elim \forall : 4
5.1.5 $x \in C$	Modus Ponens: 5.1.3, 5.1.4
5.1 $x \in A \rightarrow x \in C$	Direct Proof
5. $\forall x, x \in A \rightarrow x \in C$	Intro \forall
6. $A \subseteq C$	Undef Subset: 5

(b) Translate the formal proof to an **English Proof**.

Solution:

Let x be an arbitrary element of A . Since $A \subseteq B$, by definition of subset, $x \in B$. Then, since $B \subseteq C$, by definition of subset, $x \in C$. Since x was arbitrary, we have shown that $A \subseteq C$ by definition of subset.

4. Moderately Unsettling

Let A, B and C be the following sets:

$$\begin{aligned} A &:= \{x \in \mathbb{Z} : x \equiv_4 0\} \\ B &:= \{x \in \mathbb{Z} : x \equiv_4 2\} \\ C &:= \{x \in \mathbb{Z} : x \equiv_2 0\} \end{aligned}$$

Consider the following claim:

$$C = (A \cup B)$$

(a) Write an English proof to show that $C \subseteq (A \cup B)$

Solution:

Let x be an arbitrary element of C . By definition of C , we have $x \equiv_2 0$. By definition of congruence, $2|x$ and by definition of divides, $x = 2k$ for some integer k . We proceed by cases:

Case 1: Suppose k is even. By definition of even, $k = 2m$ for some integer m . Then $x = 2k = 2(2m) = 4m$. By definition of divides, $4|x$ and by definition of congruence $x \equiv_4 0$. By definition of A , $x \in A$. Since $x \in A$, $x \in A$ or $x \in B$, and by definition of union, $x \in (A \cup B)$

Case 2: Suppose k is odd. By definition of odd, $k = 2n + 1$ for some integer n . Then $x = 2k = 2(2n + 1) = 4n + 2$. By definition of divides, $4|x - 2$ and by definition of congruence $x \equiv_4 2$. By definition of B , $x \in B$. Since $x \in B$, $x \in A$ or $x \in B$, and by definition of union, $x \in (A \cup B)$

Since these cases are exhaustive, we have shown that $x \in (A \cup B)$.

Since x was arbitrary, we have shown that $C \subseteq (A \cup B)$.

(b) Write an English proof to show that $(A \cup B) \subseteq C$

Solution:

Let x be an arbitrary element of $A \cup B$. By definition of union, $x \in A$ or $x \in B$. We proceed by cases:

Case 1: Suppose $x \in A$. By definition of A , $x \equiv_4 0$. By definition of congruence, $4|x$, and by definition of divides, $x = 4k = 2(2k)$ for some integer k . By definition of divides, $2|x$, and by definition of congruence $x \equiv_2 0$. By definition of C , $x \in C$.

Case 2: Suppose $x \in B$. By definition of B , $x \equiv_4 2$. By definition of congruence $4|(x - 2)$, and by definition of divides, $x - 2 = 4j$ for some integer j . Rearranging, we have $x = 4j + 2 = 2(2j + 1)$. By definition of divides, $2|x$, and by definition of congruence, $x \equiv_2 0$. By definition of C , $x \in C$.

Since these cases are exhaustive, we have shown that $x \in C$.

Since x was arbitrary, we have shown that $(A \cup B) \subseteq C$.

(c) Combine part(a) and part(b) to show that $C = (A \cup B)$

Solution:

Since $C \subseteq (A \cup B)$ and $(A \cup B) \subseteq C$, we have shown that $C = (A \cup B)$.

5. $\cup \rightarrow \cap?$

Prove or disprove: for all sets A and B , $A \cup B \subseteq A \cap B$.

Recall that we can disprove a for all claim by finding a counter-example.

Solution:

We disprove the claim with a counter example. Consider the sets $A = \{1, 2\}$ and $B = \{1, 3\}$. $A \cup B = \{1, 2, 3\}$ and $A \cap B = \{1\}$. Since $A \cup B$ has elements that are not in $A \cap B$ (2 and 3), by definition of subset, $A \cup B \not\subseteq A \cap B$.

6. Powerful Ideas

Let A and B be sets. Consider the following claim:

$$\text{If } A \subseteq B \text{ then } \mathcal{P}(A) \subseteq \mathcal{P}(B)$$

Write an **English proof** that the claim holds.

Solution:

Let X be an arbitrary element of $\mathcal{P}(A)$. By definition of power set, $X \subseteq A$. Let x be an arbitrary element of X . Since $X \subseteq A$, by definition of subset, $x \in A$. Since $A \subseteq B$, by definition of subset, $x \in B$. Since x was an arbitrary element of X , by definition of subset, $X \subseteq B$. By definition of power set, $X \in \mathcal{P}(B)$. Since X was an arbitrary element of $\mathcal{P}(A)$, by definition of subset, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

7. Cartesian Product Proof

Let A, B, C, D be sets. Write an **English proof** of the follow claim:

$$A \times C \subseteq (A \cup B) \times (C \cup D)$$

Solution:

Let $x \in A \times C$ be arbitrary. Then x is of the form $x = (y, z)$, where $y \in A$ and $z \in C$. Since $y \in A$ we have $y \in A$ or $y \in B$. Then by definition of union, $y \in (A \cup B)$. Similarly, since $z \in C$, we have $z \in C$ or $z \in D$. Then by definition of union, $z \in (C \cup D)$. Since $y \in (A \cup B)$ and $z \in (C \cup D)$, we have shown that $x = (y, z) \in (A \cup B) \times (C \cup D)$. Since x was arbitrary, we have shown $A \times C \subseteq (A \cup B) \times (C \cup D)$.

8. Set Equality Proof II

Let A, B, C be sets. Consider the following claim

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

(a) Write a **formal proof** that the claim holds.

Solution:

Let x be arbitrary

1.1.1	$x \in A \setminus (B \cap C)$	Assumption
1.1.2	$x \in A \wedge \neg(x \in B \cap C)$	Def of Set Difference 1.1.1
1.1.3	$x \in A \wedge \neg(x \in B \wedge x \in C)$	Def of Intersection 1.1.2
1.1.4	$x \in A \wedge (\neg(x \in B) \vee \neg(x \in C))$	De Morgan 1.1.3
1.1.5	$(x \in A \wedge \neg(x \in B)) \vee (x \in A \wedge \neg(x \in C))$	Distributivity 1.1.4
1.1.6	$(x \in A \setminus B) \vee (x \in A \wedge \neg(x \in C))$	Undef Set Difference 1.1.5
1.1.7	$(x \in A \setminus B) \vee (x \in A \setminus C)$	Undef Set Difference 1.1.6
1.1.8	$x \in (A \setminus B) \cup (A \setminus C)$	Undef Union 1.2.7
1.1	$x \in A \setminus (B \cap C) \rightarrow x \in (A \setminus B) \cup (A \setminus C)$	Direct Proof
1.2.1	$x \in (A \setminus B) \cup (A \setminus C)$	Assumption
1.2.2	$(x \in A \setminus B) \vee (x \in A \setminus C)$	Def of Union 1.2.1
1.2.3	$(x \in A \wedge \neg(x \in B)) \vee (x \in A \wedge \neg(x \in C))$	Def of Set Difference 1.2.3
1.2.4	$(x \in A \wedge \neg(x \in B)) \vee (x \in A \wedge \neg(x \in C))$	Def of Set Difference 1.2.3
1.2.5	$x \in A \wedge (\neg(x \in B) \vee \neg(x \in C))$	Distributivity 1.2.4

1.2.6	$x \in A \wedge \neg(x \in B \wedge x \in C)$	De Morgan 1.2.5
1.2.7	$x \in A \wedge \neg(x \in B \cap C)$	Undef Intersection 1.2.6
1.2.8	$x \in A \setminus (B \cap C)$	Undef Set Difference 1.1.7
1.2	$x \in (A \setminus B) \cup (A \setminus C) \rightarrow x \in A \setminus (B \cap C)$	Direct Proof
1.3	$(x \in A \setminus (B \cap C) \rightarrow x \in (A \setminus B) \cup (A \setminus C)) \wedge (x \in (A \setminus B) \cup (A \setminus C) \rightarrow x \in A \setminus (B \cap C))$	Intro \wedge 1.1, 1.2
1.4	$x \in A \setminus (B \cap C) \leftrightarrow x \in (A \setminus B) \cup (A \setminus C)$	Biconditional 1.2, 1.3
1.	$\forall x, x \in A \setminus (B \cap C) \leftrightarrow x \in (A \setminus B) \cup (A \setminus C)$	Intro \forall
2.	$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$	Undef SameSet 1

(b) Translate your proof to an **English Proof**.

Follow the Meta-Theorem template from lecture (i.e., using a chain of equivalences instead of two subset proofs).

Solution:

Let x be arbitrary. We show being an element of the left set and being an element of the right set are equivalent:

$$\begin{aligned}
 x \in A \setminus (B \cap C) &\equiv (x \in A) \wedge \neg(x \in B \cap C) && \text{Def of Set Difference} \\
 &\equiv (x \in A) \wedge \neg((x \in B) \wedge (x \in C)) && \text{Def of Intersection} \\
 &\equiv (x \in A) \wedge (\neg(x \in B) \vee \neg(x \in C)) && \text{DeMorgan's Law} \\
 &\equiv ((x \in A) \wedge \neg(x \in B)) \vee ((x \in A) \wedge \neg(x \in C)) && \text{Distributivity} \\
 &\equiv (x \in A \setminus B) \vee (x \in A \setminus C) && \text{Def of Set Difference} \\
 &\equiv x \in (A \setminus B) \cup (A \setminus C) && \text{Def of Union}
 \end{aligned}$$

Since x was arbitrary, we have shown $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

(c) Optional: Re-write this proof as an **English Proof** that is made up of two subset proofs.

Solution:

Let $x \in A \setminus (B \cap C)$ be arbitrary. Then by definition of set difference, $x \in A$ and $x \notin B \cap C$. Then by definition of intersection and DeMorgan's Law, $x \notin B$ or $x \notin C$. Thus (by distributive property of propositions) we have $x \in A$ and $x \notin B$, or $x \in A$ and $x \notin C$. Then by definition of set difference, $x \in (A \setminus B)$ or $x \in (A \setminus C)$. Then by definition of union, $x \in (A \setminus B) \cup (A \setminus C)$. Since x was arbitrary, we have shown $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$.

Let $x \in (A \setminus B) \cup (A \setminus C)$ be arbitrary. Then by definition of union, $x \in (A \setminus B)$ or $x \in (A \setminus C)$. Then by definition of set difference, $x \in A$ and $x \notin B$, or $x \in A$ and $x \notin C$. Then (by distributive property of propositions) $x \in A$, and $x \notin B$ or $x \notin C$. Then by definition of intersection and DeMorgan's Law, $x \in A$ and $x \notin (B \cap C)$. Then by definition of set difference, $x \in A \setminus (B \cap C)$. Since x was arbitrary, we have shown that $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C)$.

Since $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$ and $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C)$, we have shown $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

9. Structural Induction: Divisible by 4

Define a set T of numbers by:

- 4 and 12 are in T
- If $x \in T$ and $y \in T$, then $x + y \in T$ and $x - y \in T$

Prove by structural induction that every number in T is divisible by 4.

Solution:

Let $P(b)$ be the claim that $4 \mid b$. We will prove $P(b)$ is true for all numbers $b \in T$ by structural induction.

Base Case:

- $4 = 1 \cdot 4$, so $4 \mid 4$ and $P(4)$ holds.
- $12 = 3 \cdot 4$, so $4 \mid 12$ and $P(12)$ holds.

Inductive Hypothesis: Suppose $P(x)$ and $P(y)$ for some arbitrary $x, y \in T$.

Inductive Step:

Goal: Prove $P(x+y)$ and $P(x-y)$

Per the IH, $4 \mid x$ and $4 \mid y$. By the definition of divides, $x = 4k$ and $y = 4j$ for some integers k, j .

Goal: Show $P(x+y)$

$x + y = 4k + 4j = 4(k + j)$. By definition of divides, $4 \mid x + y$ and $P(x + y)$ holds.

Goal: Show $P(x-y)$

Similarly, $x - y = 4k - 4j = 4(k - j)$. By the definition of divides, $4 \mid x - y$ and $P(x - y)$ holds.

Conclusion: Therefore, $P(b)$ holds for all numbers $b \in T$.

10. More Induction...Literally

Define a set S as follows:

Basis: $6 \in S$; $15 \in S$

Recursive: if $x, y \in S$ then $x + y \in S$

Define a set T as follows:

Basis: $6 \in T$; $15 \in T$

Recursive: if $x \in T$ then $x + 6 \in T$ and $x + 15 \in T$

In lecture you proved that every element of T is an element of S .

Now we're going to prove that every element of S is an element of T .

(a) First, use structural induction to prove the following lemma:

The sum of any two elements in T is also in T . Formally this is: $\forall a, b \in T (a + b \in T)$

Solution:

Let $P(b)$ be " $a + b \in T$ for all $a \in T$ ". We prove $P(b)$ for all $b \in T$ by structural induction.

Base Case:

$(b = 6)$: Let $a \in T$ be arbitrary. $a + b = a + 6 \in T$ by the recursive step. So $P(6)$ holds.

$(b = 15)$: Let $a \in T$ be arbitrary. $a + b = a + 15 \in T$ by the recursive step. So $P(15)$ holds.

Inductive Hypothesis: Assume that $P(b)$ is true for some arbitrary $b \in T$. i.e., assume that for all $a \in T$, $a + b \in T$.

Inductive Step: We need to show $P(b + 6)$ and $P(b + 15)$.

Goal: Show $P(b+6)$: Let $a \in T$ be arbitrary. $a + (b + 6) = (a + b) + 6$. From the inductive hypothesis, we know $a + b \in T$. Therefore, by the recursive step, $(a + b) + 6 \in T$. Since a was arbitrary, we have shown $P(b + 6)$.

Goal: Show $P(b+15)$: Let $a \in T$ be arbitrary. $a + (b + 15) = (a + b) + 15$. From the inductive hypothesis, we know $a + b \in T$. Therefore, by the recursive step, $(a + b) + 15 \in T$. Since a was arbitrary, we have shown $P(b + 15)$.

We have shown the claim holds for all $b \in T$ by induction.

(b) Now, use structural induction to prove the main claim: Every element of S is also in T . You can use the Lemma from part (a) by citing "part (a) lemma".

Solution:

Let $P(x)$ be " $x \in T$ ". We prove $P(x)$ is true for all $x \in S$ by structural induction.

Base Case: $6 \in T$ and $15 \in T$, both by the basis step, so $P(6)$ and $P(15)$ are true.

Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$.

Inductive Step: We need to show that $P(x + y)$ holds. By the inductive hypothesis, we know $P(x)$ and $P(y)$ hold i.e., $x \in T$ and $y \in T$. By the lemma from part (a), we can conclude that $x + y \in T$, so $P(x + y)$ holds.

Therefore, $P(x)$ is true for all $x \in S$ by induction.

11. We'll do this next week, but you can try it after Wednesday's lecture.

Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a **CharTree**
- Recursive Step: If L, R are **CharTrees** and $c \in \Sigma$, then $\text{CharTree}(L, c, R)$ is also a **CharTree**

Intuitively, a **CharTree** is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

- The preorder function returns the preorder traversal of all elements in a **CharTree**.

$$\begin{aligned}\text{preorder}(\text{Null}) &= \varepsilon \\ \text{preorder}(\text{CharTree}(L, c, R)) &= c \cdot \text{preorder}(L) \cdot \text{preorder}(R)\end{aligned}$$

- The postorder function returns the postorder traversal of all elements in a **CharTree**.

$$\begin{aligned}\text{postorder}(\text{Null}) &= \varepsilon \\ \text{postorder}(\text{CharTree}(L, c, R)) &= \text{postorder}(L) \cdot \text{postorder}(R) \cdot c\end{aligned}$$

- The mirror function produces the mirror image of a **CharTree**.

$$\begin{aligned}\text{mirror}(\text{Null}) &= \text{Null} \\ \text{mirror}(\text{CharTree}(L, c, R)) &= \text{CharTree}(\text{mirror}(R), c, \text{mirror}(L))\end{aligned}$$

- Finally, for all strings x, x^R , the “reversal” of x , produces the string in reverse order.

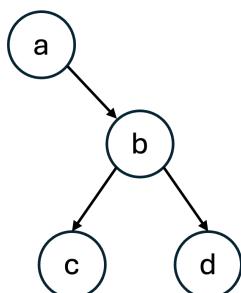
Additional Facts:

You may use the following facts:

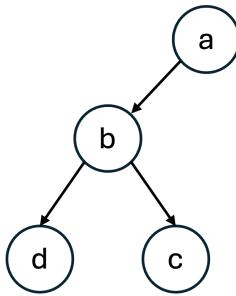
- **Fact 1:** For any strings x_1, \dots, x_k : $(x_1 \cdot \dots \cdot x_k)^R = x_k^R \cdot \dots \cdot x_1^R$
- **Fact 2:** For any character c , $c^R = c$

It turns out that for any CharTree T , the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T .

Example for Intuition:



Let T be the tree above.
 $\text{preorder}(T) = \text{"abcd"}$.
 T is built as (Null, a, U)
Where U is (V, b, W) ,
 $V = (\text{Null}, c, \text{Null})$, $W = (\text{Null}, d, \text{Null})$.



This tree is $\text{mirror}(T)$.
 $\text{postorder}(\text{mirror}(T)) = \text{dcba}$,
“dcba” is the reversal of “abcd” so
 $[\text{preorder}(T)]^R = \text{postorder}(\text{mirror}(T))$ holds for T

Use structural induction to prove the following claim:

$$\text{For every CharTree, } T: [\text{preorder}(T)]^R = \text{postorder}(\text{mirror}(T))$$

Solution:

Let $P(T)$ be “[preorder(T)] R = postorder(mirror(T))”. We show $P(T)$ holds for all **CharTrees** T by structural induction.

Base case ($T = \text{Null}$):

$$\text{LHS: } [\text{preorder}(\text{Null})]^R = \varepsilon^R = \varepsilon$$

$$\text{RHS: } \text{postorder}(\text{mirror}(\text{Null})) = \text{postorder}(\text{Null}) = \varepsilon$$

Since LHS = RHS, $P(\text{Null})$ holds.

Inductive hypothesis: Suppose $P(L), P(R)$ both hold for arbitrary **CharTrees** L, R .

Inductive step:

Let $T = \text{CharTree}(L, c, R)$ for an arbitrary $c \in \Sigma$. We want to show $P(T)$ i.e., $[\text{preorder}(\text{CharTree}(L, c, R))]^R = \text{postorder}(\text{mirror}(\text{CharTree}(L, c, R)))$.

$$\begin{aligned}
 [\text{preorder}(T)]^R &= [\text{preorder}(\text{CharTree}(L, c, R))]^R && \text{Def of } T \\
 &= [c \cdot \text{preorder}(L) \cdot \text{preorder}(R)]^R && \text{Def of preorder} \\
 &= \text{preorder}(R)^R \cdot \text{preorder}(L)^R \cdot c^R && \text{Fact 1} \\
 &= \text{preorder}(R)^R \cdot \text{preorder}(L)^R \cdot c && \text{Fact 2} \\
 &= \text{postorder}(\text{mirror}(R)) \cdot \text{postorder}(\text{mirror}(L)) \cdot c && \text{By I.H.} \\
 &= \text{postorder}(\text{CharTree}(\text{mirror}(R), c, \text{mirror}(L))) && \text{Def of postorder} \\
 &= \text{postorder}(\text{mirror}(\text{CharTree}(L, c, R))) && \text{Def of mirror} \\
 &= \text{postorder}(\text{mirror}(T)) && \text{Def of } T
 \end{aligned}$$

So $P(\text{CharTree}(L, c, R))$ holds.

By the principle of induction, $P(T)$ holds for all **CharTrees** T .