CSE 390Z: Mathematics for Computation Workshop

Week 6 Workshop Solutions

Conceptual Review

(a)

Set Operations and Comparisons

Set Equality: A= B :=Vz(x € A+ z € B)

Subset: AC B:=Vz(x € A -z € B)

Union: AUB:={z : € AVz € B}

Intersection: ANB:={z : t€ ANz € B}

Set Difference: A\B=A—-B:={z : vt € ANz ¢ B}
Set Complement: A = AY :={z : z ¢ A}

Powerset: P(A) :={B : B C A}

Cartesian Product: A x B:={(a,b) :a € A, be B}

Set Builder Notation

Filter: S:={z € U : P(z)}
Translation: S is all the things in U that satisfy P(x).

Map: T :={f(z): 2 € U}
Translation: T is all output values from the function f(x) when the input is something from U.

The : is read as "such that". It is also common to use | instead of :. When using set builder nota-
tion, the stuff before the : (or |) is the stuff in the set. The stuff after the : (or |) are requirements that
stuff must fulfill to be in the set.

How do we prove that for sets A and B, A C B?

Solution:

Let x € A be arbitrary... thus x € B. Since x was arbitrary, we have proven, by the definition of subset,
that A C B.

What are two ways we can prove that for sets A and B, A = B?

Solution:

Use two subset proofs to show that A C B and B C A. OR
Using a chain of equivalences (This is the preferred method when A and B are defined in terms of set
operations):
Let  be an arbitrary <<thing in the domain>>
The stated biconditional holds since
x € A =<< replace set operations with logical operators >>

=< < apply propositional logic equivalences >>

=< < replace logical operators with set operations >>

=zrebB

Since = was arbitrary, we have proven, by the definition of set equality, that A = B.



1. A Basic Subset Proof

Let A, B be sets. Consider the following claim:

(a)

(b)

ANBCAUB

Write a formal proof that the claim holds. Use cozy-style rules for applying definitions. For example, You
can replace A C B by Vz(z € A — x € B) with "Def of Subset" and the reverse with "Undef Subset".

Solution:

Let x be arbitrary

111 zx€ ANB Assumption

112 x€ ANz EB Def of Intersection: 1.1.1

113 2z€ A Elim A: 1.1.2

114 € AveeB Intro v 1.1.3

115 2x€ AUB Undef Union 1.1.4

llx€e ANB—xz€ AUB Direct Proof

1. Ve,ee ANB—x€ AUB Intro V
2. AhBCAUB Undef Subset: 1

Translate your formal proof to an English proof. You may be surprised by how short your proof is!

Solution:

Let z € AN B be arbitrary. Then by definition of intersection, x € A and z € B. Since x € A, we have z € A
or x € B. Then by definition of union, z € AU B. Since x was arbitrary, this shows that AN B C AU B.

2. Set Equality Proof

(a)

(b)

Write an English proof to show that AN (AU B) C A for sets A, B.

Solution:

Let = be an arbitrary member of AN (AU B). Then by definition of intersection, x € A and z € AU B.
So certainly, x € A. Since = was arbitrary, we have shown that AN (AU B) C A by definition of subset.

Write an English proof to show that A C AN (AU B) for sets A, B.

Solution:

Let y € A be arbitrary. Since y € A, we have y € A or y € B. Then by definition of union, y € AU B.
Since y € A and y € AU B, by definition of intersection, y € AN (AU B). Since y was arbitrary, we
have shown that A C AN (AU B).

Combine part (a) and (b) to conclude that AN (AU B) = A for sets A, B.

Solution:
Since AN(AUB) C Aand AC AN (AU B), we have shown that AN (AU B) = A.

Re-write this proof using the Meta-Theorem template from lecture (i.e., using a chain of equivalences
instead of two subset proofs).



Solution:

Let = be arbitrary. The biconditional Vz(x € AN (AU B) <> z € A) holds since

r€AN(AUB)=(x € A)A(x € AU B)
=(xecAAN(xreAVzeB)
=zrecA

Def of Intersection
Def of Union
Absorption

Since x was arbitrary, we have proven, by definition of set equality, that AN (AU B) = A.

3. Subsets

Let A, B, C be sets. Consider the following claim:

A C C follows from A C B and BC C

(a) Write a formal proof that the claim holds:

Solution:
1. ACB
2. BCC
3. Ve, x € A—zx€B
4 Ve,x e B—zxze(C
Let x be arbitrary.
511 z€ A
512z € A—z€B
513 z€B
514 zeB—xeC
515 x€C
51lx€eA—zeC
5. Ve,e e A= x el
6. ACC

(b) Translate the formal proof to an English Proof.

Solution:

Given
Given
Def of Subset: 1
Def of Subset: 2

Assumption

ElimV: 3

Modus Ponens: 5.1.1, 5.1.2
ElimV: 4

Modus Ponens: 5.1.3, 5.1.4
Direct Proof

Intro V

Undef Subset: 5

Let = be an arbitrary element of A. Since A C B, by definition of subset, x € B. Then, since B C C, by
definition of subset, z € C. Since x was arbitrary, we have shown that A C C by definition of subset.

4. Moderately Unsettling
Let A, B and C' be the following sets:

Consider the following claim:
C=(AUB)

(a) Write an English proof to show that C' C (AU B)



Solution:

Let = be an arbitrary element of C. By definition of C', we have x =5 0. By definition of congruence, 2|x
and by definition of divides, © = 2k for some integer k. We proceed by cases:

Case 1: Suppose k is even. By definition of even, k = 2m for some integer m. Then x = 2k = 2(2m) =
4m. By definition of divides, 4|z and by definition of congruence xz =4 0. By definition of A, z € A.
Since x € A, x € A or x € B, and by definition of union, z € (AU B)

Case 2: Suppose k is odd. By definition of odd, k¥ = 2n + 1 for some integer n. Then z = 2k =
2(2n+1) = 4n+2. By definition of divides, 4|z —2 and by definition of congruence = =4 2. By definition
of B, z € B. Since x € B, x € A or x € B, and by definition of union, x € (AU B)

Since these cases are exhaustive, we have shown that z € (AU B).
Since x was arbitrary, we have shown that C' C (AU B).

(b) Write an English proof to show that (AU B) C C

Solution:

Let = be an arbitrary element of AU B. By definition of union, x € A or z € B. We proceed by cases:

Case 1: Suppose z € A. By definition of A, z =4 0. By definition of congruence, 4|z, and by definition of
divides, x = 4k = 2(2k) for some integer k. By definition of divides, 2|z, and by definition of congruence
x =9 0. By definition of C', z € C.

Case 2: Suppose z € B. By definition of B, © =4 2. By definition of congruence 4|(z — 2), and by
definition of divides, x — 2 = 4j for some integer j. Rearranging, we have z = 4j + 2 = 2(25 + 1). By
definition of divides, 2|x, and by definition of congruence, x =5 0. By definition of C', z € C.

Since these cases are exhaustive, we have shown that z € C.
Since x was arbitrary, we have shown that (AU B) C C.

(c) Combine part(a) and part(b) to show that C' = (AU B)

Solution:
Since C C (AU B) and (AU B) C C, we have shown that C = (AU B).

5. U—=nN7?

Prove or disprove: for all sets A and B, AUB C AN B.

Recall that we can disprove a for all claim by finding a counter-example.

Solution:

We disprove the claim with a counter example. Consider the sets A = {1,2} and B = {1,3}. AUB =1{1,2,3}
and AN B = {1}. Since AU B has elements that are not in AN B (2 and 3), by definition of subset,
AUBY¢Z ANB.



6. Powerful Ideas
Let A and B be sets. Consider the following claim:
If AC B then P(A) C P(B)

Write an English proof that the claim holds.

Solution:

Let X be an arbitrary element of P(A). By definition of power set, X C A. Let x be an arbitrary element of
X. Since Since X C A, by definition of subset, x € A. Since A C B, by definition of subset, x € B. Since x
was an arbitrary element of X, by definition of subset, X C B. By definition of power set, X € P(B). Since
X was an arbitrary element of P(A), by definition of subset, P(A) C P(B).

7. Cartesian Product Proof
Let A, B,C, D be sets. Write an English proof of the follow claim:

AxCC(AUB)x (CuD)

Solution:

Let z € A x C be arbitrary. Then z is of the form = = (y, z), where y € A and z € C. Since y € A we
have y € A or y € B. Then by definition of union, y € (AU B). Similarly, since z € C, we have z € C or
z € D. Then by definition of union, z € (C U D). Since y € (AU B) and z € (C U D), we have shown that
x=(y,z) € (AUB) x (CUD). Since x was arbitrary, we have shown A x C C (AU B) x (CUD,).

8. Set Equality Proof Il
Let A, B, C be sets. Consider the following claim

AN(BNC) = (A\ B)U(4\0)
(a) Write a formal proof that the claim holds.

Solution:

Let = be arbitrary

111 2 € A\ (BNCO) Assumption
112z € AN=(zxe BNC) Def of Set Difference 1.1.1
113z AN-(xe BAhNz () Def of Intersection 1.1.2
114z e AN(=(zeB)Va(ze)) De Morgan 1.1.3
115 (z€e AAN-(xe€B))V(re AN-(x e C)) Distributivity 1.1.4
116 (xr€ A\B)V(z€e AN—(x € ()) Undef Set Difference 1.1.5
117 (x€ A\B)V(z € A\CO) Undef Set Difference 1.1.6
118z € (A\B)U(4A\C) Undef Union 1.2.7
11 z€ A\(BNC)—ze(A\B)U(A\C(O) Direct Proof
121 z€ (A\B)U(A\CO) Assumption
122 (x€ A\B)V(z e A\C) Def of Union 1.2.1
123 (z€e AN-(zeB))V(reA\CO) Def of Set Difference 1.2.3
124 (xr€e AN—(zeB))V(re AN-(z e C)) Def of Set Difference 1.2.3
125 z€ AN(=(x e B)V—(ze()) Distributivity 1.2.4



(b)

126 r € AN=(xe BNz € () De Morgan 1.2.5

127 2 € AN=(zxe BNCO) Undef Intersection 1.2.6

128 € A\ (BNCQC) Undef Set Difference 1.1.7

12 z€ (A\B)U(A\C) =z A\ (BNCO) Direct Proof
13 (z€ A\(BNC)—=2€(A\B)UA\O)A(ze(A\B)U(A\C)—zec A\ (BNQO))

Intro A 1.1, 1.2

14z A\(BNC) <z (A\B)U(A\CO) Biconditional 1.2, 1.3

1. Ve,x € A\ (BNC) <z € (A\B)U((A4\C) Intro V

2. A\(BNnC)=(A\B)U((A\(O) Undef SameSet 1

Translate your proof to an English Proof.
Follow the Meta-Theorem template from lecture (i.e., using a chain of equivalences instead of two subset
proofs).

Solution:

Let x be arbitrary. We show being an element of the left set and being an element of the right set are
equivalent:

reA\(BNC)=(rxeA)N-(xe BNC) Def of Set Difference
=xecA)AN((zxeB)AN(xel)) Def of Intersection
=xecAAN(~(zreB)vVa(zel)) DeMorgan's Law
=((xeAAN-(zeB)V((zeA)A(xel)) Distributivity
=(xe€A\B)V(ze A\QO) Def of Set Difference
=rxe€(A\B)U((A\CO) Def of Union

Since = was arbitrary, we have shown A\ (BNC)=(A\ B)U(A\C).

Optional: Re-write this proof as an English Proof that is made up of two subset proofs.

Solution:

Let x € A\ (BN C) be arbitrary. Then by definition of set difference, x € A and x ¢ BN C. Then
by definition of intersection and DeMorgan's Law, = ¢ B or x ¢ C. Thus (by distributive property of
propositions) we have z € A and z ¢ B, or x € A and ¢ C. Then by definition of set difference,
x € (A\B)orze (A\C). Then by definition of union, x € (A\ B) U (A \ C). Since x was arbitrary,
we have shown A\ (BNC) C (A\ B)U(A\(O).

Let z € (A\ B)U (A \ C) be arbitrary. Then by definition of union, z € (A\ B) or x € (A\ C). Then
by definition of set difference, x € A and x ¢ B, or z € A and = ¢ C. Then (by distributive property
of propositions) z € A, and « ¢ B or x ¢ C. Then by definition of intersection and DeMorgan’s Law,
x € Aand z ¢ (BNC). Then by definition of set difference, x € A\ (BN C'). Since x was arbitrary, we
have shown that (A\ B)U(A\C)C A\ (BNC).

Since A\ (BNC) C (A\B)U(A\C) and (A\B)U(A\C) C A\ (BnNC), we have shown
A\ (BNC)=(A\B)U(A\C).



9. Structural Induction: Divisible by 4
Define a set T' of numbers by:
» 4and 12 arein T

s fxeT andyeT, thenx+yeT andz—yeT
Prove by structural induction that every number in T is divisible by 4.
Solution:

Let P(b) be the claim that 4 | b. We will prove P(b) is true for all numbers b € T" by structural induction.
Base Case:

» 4=1-4,5s0 4|4 and P(4) holds.
» 12=13-4,s04 |12 and P(12) holds.

Inductive Hypothesis: Suppose P(z) and P(y) for some arbitrary z,y € T.
Inductive Step:

‘ Goal: Prove P(z+y) and P(z —y) ‘

Per the IH, 4 |  and 4 | y. By the definition of divides, x = 4k and y = 4; for some integers k, j.

Goal: Show P(x+y)
x4y =4k + 45 = 4(k + 7). By definition of divides, 4 | x + y and P(z + y) holds.

Goal: Show P(x-y)
Similarly, x — y = 4k — 45 = 4(k — j). By the definition of divides, 4 | z — y and P(xz — y) holds.

Conclusion: Therefore, P(b) holds for all numbers b € T..



10. More Induction...Literally

Define a set S as follows: Define a set T as follows:
Basis: 6 € S; 15 € S Basis: 6 €T 15T
Recursive: if x,y € Sthenx +y € S Recursive: if x € T'thenz+6 € Tand x+15€ T

In lecture you proved that every element of 7" is an element of S.
Now we're going to prove that every element of S is an element of 7.

(a) First, use structural induction to prove the following lemma:
The sum of any two elements in 7" is also in T". Formally this is: Ya,b € T(a+ b€ T)

Solution:

Let P(b) be "a+b € T for all a € T". We prove P(b) for all b € T' by structural induction.

Base Case:

(b=06) : Let a € T be arbitrary. a +b = a+ 6 € T by the recursive step. So P(6) holds.
(b=15) : Let a € T be arbitrary. a +b=a+ 15 € T by the recursive step. So P(15) holds.
Inductive Hypothesis: Assume that P(b) is true for some arbitrary b € T i.e., assume that for all

a€T, a+beT.
Inductive Step: We need to show P(b+ 6) and P(b+ 15).

Goal: Show P(b+6): Let a € T be arbitrary. a+ (b+6) = (a+b) + 6. From the inductive hypothesis,
we know a + b € T'. Therefore, by the recursive step, (a + b) + 6 € T. Since a was arbitrary, we have
shown P(b+ 6).

Goal: Show P(b+15): Let a € T be arbitrary. a + (b + 15) = (a + b) + 15. From the inductive
hypothesis, we know a +b € T'. Therefore, by the recursive step, (a+b) + 15 € T. Since a was arbitrary,
we have shown P(b+ 15).

We have shown the claim holds for all b € T by induction.

(b) Now, use structural induction to prove the main claim: Every element of S is also in T
You can use the Lemma from part (a) by citing "part (a) lemma".

Solution:

Let P(z) be "x € T". We prove P(x) is true for all z € S by structural induction.
Base Case: 6 € T and 15 € T', both by the basis step, so P(6) and P(15) are true.
Inductive Hypothesis: Suppose that P(z) and P(y) are true for some arbitrary z,y € S.

Inductive Step: We need to show that P(x + y) holds. By the inductive hypothesis, we know P(z) and
P(y) hold i.e., z € T and y € T. By the lemma from part (a), we can conclude that x +y € T, so
P(z + y) holds.

Therefore, P(z) is true for all z € S by induction.



11. We’'ll do this next week, but you can try it after Wednesday’s lecture.

Structural Induction: CharTrees
Recursive Definition of CharTrees:

= Basis Step: Null is a CharTree
» Recursive Step: If L, R are CharTrees and ¢ € 3, then CharTree(L, ¢, R) is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

The preorder function returns the preorder traversal of all elements in a CharTree.

preorder(Null) =
preorder(CharTree(L,c, R)) = c- preorder(L) - preorder(R)

The postorder function returns the postorder traversal of all elements in a CharTree.

postorder(Null) =¢
postorder(CharTree(L,c, R)) = postorder(L) - postorder(R) - ¢

The mirror function produces the mirror image of a CharTree.

mirror(Null) = Null
mirror(CharTree(L,c, R)) = CharTree(mirror(R), c, mirror(L))

Finally, for all strings =, 2%, the “reversal” of x, produces the string in reverse order.

Additional Facts:
You may use the following facts:

= Fact 1: For any strings xy, ...,z (21 - ... - xp)

R:

= Fact 2: For any character ¢, ¢ c

It turns out that for any CharTree T', the reversal of the preorder traversal of T is the same as the postorder
traversal of the mirror of T

Example for Intuition:

e Let T be the tree above.
preorder(T') ="abcd".
T is built as (Null,a,U)

° Where U is (V,b, W),
V = (Null,c,Null), W = (Null,d, Null).



e This tree is mirror(T).
postorder(mirror(7")) ="“dcba”,
“dcba” is the reversal of “abcd” so

° [preorder(T")]" = postorder(mirror(T)) holds for T

Use structural induction to prove the following claim:
For every CharTree, T [preorder(T)]® = postorder(mirror(T’))

Solution:

Let P(T) be “[preorder(T)]"* = postorder(mirror(T))". We show P(T') holds for all CharTrees T" by structural
induction.

Base case (7' = Null):

LHS: [preorder(Null)]® = &f = ¢

RHS: postorder(mirror(7')) = postorder(Null) = ¢

Since LHS = RHS, P(Null) holds.

Inductive hypothesis: Suppose P(L), P(R) both holdfor arbitrary CharTrees L, R.
Inductive step:

Let 7' = CharTree(L, ¢, R) for an arbitrary ¢ € 3. We want to show P(T) i.e.,
[preorder(CharTree(L, ¢, R))]® = postorder(mirror(CharTree(L, ¢, R))).

[preorder(T')|® = [preorder(CharTree(L, ¢, R))]" Def of T
= [c - preorder(L) - preorder(R)] Def of preorder
= preorder(R)" - preorder(L)® - ¢ Fact 1
= preorder(R)" - preorder(L)® - ¢ Fact 2
= postorder(mirror(R)) - postorder(mirror(L)) - ¢ By I.H.
= postorder(CharTree(mirror(R), ¢, mirror(L)) Def of postorder
= postorder(mirror(CharTree(L, ¢, R))) Def of mirror
= postorder(mirror(T)) Def of T

So P(CharTree(L, ¢, R)) holds.
By the principle of induction, P(T') holds for all CharTrees T'.
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