
CSE 390Z: Mathematics for Computation Workshop
Week 6 Workshop Solutions

Conceptual Review
(a) Set Operations and Comparisons

Set Equality: A = B := ∀x(x ∈ A ↔ x ∈ B)
Subset: A ⊆ B := ∀x(x ∈ A → x ∈ B)
Union: A ∪B := {x : x ∈ A ∨ x ∈ B}
Intersection: A ∩B := {x : x ∈ A ∧ x ∈ B}
Set Difference: A \B = A−B := {x : x ∈ A ∧ x /∈ B}
Set Complement: A = AC := {x : x /∈ A}
Powerset: P(A) := {B : B ⊆ A}
Cartesian Product: A×B := {(a, b) : a ∈ A, b ∈ B}

(b) Set Builder Notation

Filter: S := {x ∈ U : P (x)}
Translation: S is all the things in U that satisfy P (x).

Map: T := {f(x) : x ∈ U}
Translation: T is all output values from the function f(x) when the input is something from U .

The : is read as "such that". It is also common to use | instead of :. When using set builder nota-
tion, the stuff before the : (or |) is the stuff in the set. The stuff after the : (or |) are requirements that
stuff must fulfill to be in the set.

(c) How do we prove that for sets A and B, A ⊆ B?

Solution:
Let x ∈ A be arbitrary... thus x ∈ B. Since x was arbitrary, we have proven, by the definition of subset,
that A ⊆ B.

(d) What are two ways we can prove that for sets A and B, A = B?

Solution:
Use two subset proofs to show that A ⊆ B and B ⊆ A. OR
Using a chain of equivalences (This is the preferred method when A and B are defined in terms of set
operations):
Let x be an arbitrary <<thing in the domain>>
The stated biconditional holds since

x ∈ A ≡<< replace set operations with logical operators >>

≡<< apply propositional logic equivalences >>

≡<< replace logical operators with set operations >>

≡ x ∈ B

Since x was arbitrary, we have proven, by the definition of set equality, that A = B.
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1. A Basic Subset Proof
Let A,B be sets. Consider the following claim:

A ∩B ⊆ A ∪B

(a) Write a formal proof that the claim holds. Use cozy-style rules for applying definitions. For example, You
can replace A ⊆ B by ∀x(x ∈ A → x ∈ B) with "Def of Subset" and the reverse with "Undef Subset".

Solution:
Let x be arbitrary
1.1.1 x ∈ A ∩B Assumption
1.1.2 x ∈ A ∧ x ∈ B Def of Intersection: 1.1.1
1.1.3 x ∈ A Elim ∧: 1.1.2
1.1.4 x ∈ A ∨ x ∈ B Intro ∨ 1.1.3
1.1.5 x ∈ A ∪B Undef Union 1.1.4

1.1 x ∈ A ∩B → x ∈ A ∪B Direct Proof
1. ∀x, x ∈ A ∩B → x ∈ A ∪B Intro ∀
2. A ∩B ⊆ A ∪B Undef Subset: 1

(b) Translate your formal proof to an English proof. You may be surprised by how short your proof is!

Solution:
Let x ∈ A∩B be arbitrary. Then by definition of intersection, x ∈ A and x ∈ B. Since x ∈ A, we have x ∈ A
or x ∈ B. Then by definition of union, x ∈ A ∪B. Since x was arbitrary, this shows that A ∩B ⊆ A ∪B.

2. Set Equality Proof
(a) Write an English proof to show that A ∩ (A ∪B) ⊆ A for sets A,B.

Solution:
Let x be an arbitrary member of A ∩ (A ∪B). Then by definition of intersection, x ∈ A and x ∈ A ∪B.
So certainly, x ∈ A. Since x was arbitrary, we have shown that A∩ (A∪B) ⊆ A by definition of subset.

(b) Write an English proof to show that A ⊆ A ∩ (A ∪B) for sets A,B.

Solution:
Let y ∈ A be arbitrary. Since y ∈ A, we have y ∈ A or y ∈ B. Then by definition of union, y ∈ A ∪ B.
Since y ∈ A and y ∈ A ∪ B, by definition of intersection, y ∈ A ∩ (A ∪ B). Since y was arbitrary, we
have shown that A ⊆ A ∩ (A ∪B).

(c) Combine part (a) and (b) to conclude that A ∩ (A ∪B) = A for sets A,B.

Solution:
Since A ∩ (A ∪B) ⊆ A and A ⊆ A ∩ (A ∪B), we have shown that A ∩ (A ∪B) = A.

(d) Re-write this proof using the Meta-Theorem template from lecture (i.e., using a chain of equivalences
instead of two subset proofs).
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Solution:
Let x be arbitrary. The biconditional ∀x(x ∈ A ∩ (A ∪B) ↔ x ∈ A) holds since

x ∈ A ∩ (A ∪B) ≡ (x ∈ A) ∧ (x ∈ A ∪B) Def of Intersection
≡ (x ∈ A) ∧ (x ∈ A ∨ x ∈ B) Def of Union
≡ x ∈ A Absorption

Since x was arbitrary, we have proven, by definition of set equality, that A ∩ (A ∪B) = A.

3. Subsets
Let A,B,C be sets. Consider the following claim:

A ⊆ C follows from A ⊆ B and B ⊆ C

(a) Write a formal proof that the claim holds:

Solution:
1. A ⊆ B Given
2. B ⊆ C Given
3. ∀x, x ∈ A → x ∈ B Def of Subset: 1
4. ∀x, x ∈ B → x ∈ C Def of Subset: 2

Let x be arbitrary.
5.1.1 x ∈ A Assumption
5.1.2 x ∈ A → x ∈ B Elim ∀: 3
5.1.3 x ∈ B Modus Ponens: 5.1.1, 5.1.2
5.1.4 x ∈ B → x ∈ C Elim ∀: 4
5.1.5 x ∈ C Modus Ponens: 5.1.3, 5.1.4

5.1 x ∈ A → x ∈ C Direct Proof
5. ∀x, x ∈ A → x ∈ C Intro ∀
6. A ⊆ C Undef Subset: 5

(b) Translate the formal proof to an English Proof.

Solution:
Let x be an arbitrary element of A. Since A ⊆ B, by definition of subset, x ∈ B. Then, since B ⊆ C, by
definition of subset, x ∈ C. Since x was arbitrary, we have shown that A ⊆ C by definition of subset.

4. Moderately Unsettling
Let A,B and C be the following sets:

A := {x ∈ Z : x ≡4 0}
B := {x ∈ Z : x ≡4 2}
C := {x ∈ Z : x ≡2 0}

Consider the following claim:
C = (A ∪B)

(a) Write an English proof to show that C ⊆ (A ∪B)
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Solution:
Let x be an arbitrary element of C. By definition of C, we have x ≡2 0. By definition of congruence, 2|x
and by definition of divides, x = 2k for some integer k. We proceed by cases:

Case 1: Suppose k is even. By definition of even, k = 2m for some integer m. Then x = 2k = 2(2m) =
4m. By definition of divides, 4|x and by definition of congruence x ≡4 0. By definition of A, x ∈ A.
Since x ∈ A, x ∈ A or x ∈ B, and by definition of union, x ∈ (A ∪B)

Case 2: Suppose k is odd. By definition of odd, k = 2n + 1 for some integer n. Then x = 2k =
2(2n+1) = 4n+2. By definition of divides, 4|x−2 and by definition of congruence x ≡4 2. By definition
of B, x ∈ B. Since x ∈ B, x ∈ A or x ∈ B, and by definition of union, x ∈ (A ∪B)

Since these cases are exhaustive, we have shown that x ∈ (A ∪B).
Since x was arbitrary, we have shown that C ⊆ (A ∪B).

(b) Write an English proof to show that (A ∪B) ⊆ C

Solution:
Let x be an arbitrary element of A ∪B. By definition of union, x ∈ A or x ∈ B. We proceed by cases:

Case 1: Suppose x ∈ A. By definition of A, x ≡4 0. By definition of congruence, 4|x, and by definition of
divides, x = 4k = 2(2k) for some integer k. By definition of divides, 2|x, and by definition of congruence
x ≡2 0. By definition of C, x ∈ C.

Case 2: Suppose x ∈ B. By definition of B, x ≡4 2. By definition of congruence 4|(x − 2), and by
definition of divides, x − 2 = 4j for some integer j. Rearranging, we have x = 4j + 2 = 2(2j + 1). By
definition of divides, 2|x, and by definition of congruence, x ≡2 0. By definition of C, x ∈ C.

Since these cases are exhaustive, we have shown that x ∈ C.
Since x was arbitrary, we have shown that (A ∪B) ⊆ C.

(c) Combine part(a) and part(b) to show that C = (A ∪B)

Solution:
Since C ⊆ (A ∪B) and (A ∪B) ⊆ C, we have shown that C = (A ∪B).

5. ∪ → ∩?
Prove or disprove: for all sets A and B, A ∪B ⊆ A ∩B.
Recall that we can disprove a for all claim by finding a counter-example.
Solution:
We disprove the claim with a counter example. Consider the sets A = {1, 2} and B = {1, 3}. A∪B = {1, 2, 3}
and A ∩ B = {1}. Since A ∪ B has elements that are not in A ∩ B (2 and 3), by definition of subset,
A ∪B 6⊆ A ∩B.
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6. Powerful Ideas
Let A and B be sets. Consider the following claim:

If A ⊆ B then P(A) ⊆ P (B)

Write an English proof that the claim holds.

Solution:
Let X be an arbitrary element of P(A). By definition of power set, X ⊆ A. Let x be an arbitrary element of
X. Since Since X ⊆ A, by definition of subset, x ∈ A. Since A ⊆ B, by definition of subset, x ∈ B. Since x
was an arbitrary element of X, by definition of subset, X ⊆ B. By definition of power set, X ∈ P(B). Since
X was an arbitrary element of P(A), by definition of subset, P(A) ⊆ P(B).

7. Cartesian Product Proof
Let A,B,C,D be sets. Write an English proof of the follow claim:

A× C ⊆ (A ∪B)× (C ∪D)

Solution:
Let x ∈ A × C be arbitrary. Then x is of the form x = (y, z), where y ∈ A and z ∈ C. Since y ∈ A we
have y ∈ A or y ∈ B. Then by definition of union, y ∈ (A ∪ B). Similarly, since z ∈ C, we have z ∈ C or
z ∈ D. Then by definition of union, z ∈ (C ∪D). Since y ∈ (A ∪ B) and z ∈ (C ∪D), we have shown that
x = (y, z) ∈ (A ∪B)× (C ∪D). Since x was arbitrary, we have shown A× C ⊆ (A ∪B)× (C ∪D).

8. Set Equality Proof II
Let A,B,C be sets. Consider the following claim

A \ (B ∩ C) = (A \B) ∪ (A \ C)

(a) Write a formal proof that the claim holds.

Solution:
Let x be arbitrary

1.1.1 x ∈ A \ (B ∩ C) Assumption
1.1.2 x ∈ A ∧ ¬(x ∈ B ∩ C) Def of Set Difference 1.1.1
1.1.3 x ∈ A ∧ ¬(x ∈ B ∧ x ∈ C) Def of Intersection 1.1.2
1.1.4 x ∈ A ∧ (¬(x ∈ B) ∨ ¬(x ∈ C)) De Morgan 1.1.3
1.1.5 (x ∈ A ∧ ¬(x ∈ B)) ∨ (x ∈ A ∧ ¬(x ∈ C)) Distributivity 1.1.4
1.1.6 (x ∈ A \B) ∨ (x ∈ A ∧ ¬(x ∈ C)) Undef Set Difference 1.1.5
1.1.7 (x ∈ A \B) ∨ (x ∈ A \ C) Undef Set Difference 1.1.6
1.1.8 x ∈ (A \B) ∪ (A \ C) Undef Union 1.2.7

1.1 x ∈ A \ (B ∩ C) → x ∈ (A \B) ∪ (A \ C) Direct Proof
1.2.1 x ∈ (A \B) ∪ (A \ C) Assumption
1.2.2 (x ∈ A \B) ∨ (x ∈ A \ C) Def of Union 1.2.1
1.2.3 (x ∈ A ∧ ¬(x ∈ B)) ∨ (x ∈ A \ C) Def of Set Difference 1.2.3
1.2.4 (x ∈ A ∧ ¬(x ∈ B)) ∨ (x ∈ A ∧ ¬(x ∈ C)) Def of Set Difference 1.2.3
1.2.5 x ∈ A ∧ (¬(x ∈ B) ∨ ¬(x ∈ C)) Distributivity 1.2.4
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1.2.6 x ∈ A ∧ ¬(x ∈ B ∧ x ∈ C) De Morgan 1.2.5
1.2.7 x ∈ A ∧ ¬(x ∈ B ∩ C) Undef Intersection 1.2.6
1.2.8 x ∈ A \ (B ∩ C) Undef Set Difference 1.1.7

1.2 x ∈ (A \B) ∪ (A \ C) → x ∈ A \ (B ∩ C) Direct Proof
1.3 (x ∈ A \ (B ∩ C) → x ∈ (A \B) ∪ (A \ C)) ∧ (x ∈ (A \B) ∪ (A \ C) → x ∈ A \ (B ∩ C))

Intro ∧ 1.1, 1.2
1.4 x ∈ A \ (B ∩ C) ↔ x ∈ (A \B) ∪ (A \ C) Biconditional 1.2, 1.3

1. ∀x, x ∈ A \ (B ∩ C) ↔ x ∈ (A \B) ∪ (A \ C) Intro ∀
2. A \ (B ∩ C) = (A \B) ∪ (A \ C) Undef SameSet 1

(b) Translate your proof to an English Proof.
Follow the Meta-Theorem template from lecture (i.e., using a chain of equivalences instead of two subset
proofs).

Solution:
Let x be arbitrary. We show being an element of the left set and being an element of the right set are
equivalent:

x ∈ A \ (B ∩ C) ≡ (x ∈ A) ∧ ¬(x ∈ B ∩ C) Def of Set Difference
≡ (x ∈ A) ∧ ¬((x ∈ B) ∧ (x ∈ C)) Def of Intersection
≡ (x ∈ A) ∧ (¬(x ∈ B) ∨ ¬(x ∈ C)) DeMorgan’s Law
≡ ((x ∈ A) ∧ ¬(x ∈ B)) ∨ ((x ∈ A) ∧ ¬(x ∈ C)) Distributivity
≡ (x ∈ A \B) ∨ (x ∈ A \ C) Def of Set Difference
≡ x ∈ (A \B) ∪ (A \ C) Def of Union

Since x was arbitrary, we have shown A \ (B ∩ C) = (A \B) ∪ (A \ C).

(c) Optional: Re-write this proof as an English Proof that is made up of two subset proofs.

Solution:
Let x ∈ A \ (B ∩ C) be arbitrary. Then by definition of set difference, x ∈ A and x /∈ B ∩ C. Then
by definition of intersection and DeMorgan’s Law, x /∈ B or x /∈ C. Thus (by distributive property of
propositions) we have x ∈ A and x /∈ B, or x ∈ A and x /∈ C. Then by definition of set difference,
x ∈ (A \B) or x ∈ (A \ C). Then by definition of union, x ∈ (A \B) ∪ (A \ C). Since x was arbitrary,
we have shown A \ (B ∩ C) ⊆ (A \B) ∪ (A \ C).

Let x ∈ (A \ B) ∪ (A \ C) be arbitrary. Then by definition of union, x ∈ (A \ B) or x ∈ (A \ C). Then
by definition of set difference, x ∈ A and x /∈ B, or x ∈ A and x /∈ C. Then (by distributive property
of propositions) x ∈ A, and x /∈ B or x /∈ C. Then by definition of intersection and DeMorgan’s Law,
x ∈ A and x /∈ (B ∩C). Then by definition of set difference, x ∈ A \ (B ∩C). Since x was arbitrary, we
have shown that (A \B) ∪ (A \ C) ⊆ A \ (B ∩ C).

Since A \ (B ∩ C) ⊆ (A \ B) ∪ (A \ C) and (A \ B) ∪ (A \ C) ⊆ A \ (B ∩ C), we have shown
A \ (B ∩ C) = (A \B) ∪ (A \ C).
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9. Structural Induction: Divisible by 4
Define a set T of numbers by:

• 4 and 12 are in T

• If x ∈ T and y ∈ T , then x+ y ∈ T and x− y ∈ T

Prove by structural induction that every number in T is divisible by 4.

Solution:

Let P (b) be the claim that 4 | b. We will prove P (b) is true for all numbers b ∈ T by structural induction.
Base Case:

• 4 = 1 · 4, so 4|4 and P (4) holds.

• 12 = 3 · 4, so 4 | 12 and P (12) holds.

Inductive Hypothesis: Suppose P (x) and P (y) for some arbitrary x, y ∈ T .
Inductive Step:

Goal: Prove P (x+y) and P (x−y)

Per the IH, 4 | x and 4 | y. By the definition of divides, x = 4k and y = 4j for some integers k, j.

Goal: Show P(x+y)
x+ y = 4k + 4j = 4(k + j). By definition of divides, 4 | x+ y and P (x+ y) holds.

Goal: Show P(x-y)
Similarly, x− y = 4k − 4j = 4(k − j). By the definition of divides, 4 | x− y and P (x− y) holds.

Conclusion: Therefore, P (b) holds for all numbers b ∈ T .
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10. More Induction...Literally
Define a set S as follows: Define a set T as follows:
Basis: 6 ∈ S; 15 ∈ S Basis: 6 ∈ T ; 15 ∈ T
Recursive: if x, y ∈ S then x+ y ∈ S Recursive: if x ∈ T then x+6 ∈ T and x+15 ∈ T

In lecture you proved that every element of T is an element of S.
Now we’re going to prove that every element of S is an element of T .

(a) First, use structural induction to prove the following lemma:
The sum of any two elements in T is also in T . Formally this is: ∀a, b ∈ T (a+ b ∈ T )

Solution:
Let P (b) be "a+ b ∈ T for all a ∈ T ". We prove P (b) for all b ∈ T by structural induction.

Base Case:

(b = 6) : Let a ∈ T be arbitrary. a+ b = a+ 6 ∈ T by the recursive step. So P (6) holds.
(b = 15) : Let a ∈ T be arbitrary. a+ b = a+ 15 ∈ T by the recursive step. So P (15) holds.

Inductive Hypothesis: Assume that P (b) is true for some arbitrary b ∈ T . i.e., assume that for all
a ∈ T , a+ b ∈ T .
Inductive Step: We need to show P (b+ 6) and P (b+ 15).
Goal: Show P(b+6): Let a ∈ T be arbitrary. a+ (b+6) = (a+ b) + 6. From the inductive hypothesis,
we know a + b ∈ T . Therefore, by the recursive step, (a + b) + 6 ∈ T . Since a was arbitrary, we have
shown P (b+ 6).
Goal: Show P(b+15): Let a ∈ T be arbitrary. a + (b + 15) = (a + b) + 15. From the inductive
hypothesis, we know a+ b ∈ T . Therefore, by the recursive step, (a+ b)+ 15 ∈ T . Since a was arbitrary,
we have shown P (b+ 15).

We have shown the claim holds for all b ∈ T by induction.

(b) Now, use structural induction to prove the main claim: Every element of S is also in T .
You can use the Lemma from part (a) by citing "part (a) lemma".

Solution:
Let P (x) be "x ∈ T ". We prove P (x) is true for all x ∈ S by structural induction.

Base Case: 6 ∈ T and 15 ∈ T , both by the basis step, so P (6) and P (15) are true.

Inductive Hypothesis: Suppose that P (x) and P (y) are true for some arbitrary x, y ∈ S.

Inductive Step: We need to show that P (x+ y) holds. By the inductive hypothesis, we know P (x) and
P (y) hold i.e., x ∈ T and y ∈ T . By the lemma from part (a), we can conclude that x + y ∈ T , so
P (x+ y) holds.

Therefore, P (x) is true for all x ∈ S by induction.
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11. We’ll do this next week, but you can try it after Wednesday’s lecture.
Structural Induction: CharTrees
Recursive Definition of CharTrees:

• Basis Step: Null is a CharTree

• Recursive Step: If L,R are CharTrees and c ∈ Σ, then CharTree(L, c,R) is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

• The preorder function returns the preorder traversal of all elements in a CharTree.

preorder(Null) = ε

preorder(CharTree(L, c,R)) = c · preorder(L) · preorder(R)

• The postorder function returns the postorder traversal of all elements in a CharTree.

postorder(Null) = ε

postorder(CharTree(L, c,R)) = postorder(L) · postorder(R) · c

• The mirror function produces the mirror image of a CharTree.

mirror(Null) = Null

mirror(CharTree(L, c,R)) = CharTree(mirror(R), c,mirror(L))

• Finally, for all strings x, xR, the “reversal” of x, produces the string in reverse order.

Additional Facts:
You may use the following facts:

• Fact 1: For any strings x1, ..., xk: (x1 · ... · xk)R = xRk · ... · xR1

• Fact 2: For any character c, cR = c

It turns out that for any CharTree T , the reversal of the preorder traversal of T is the same as the postorder
traversal of the mirror of T .

Example for Intuition:

Let T be the tree above.
preorder(T ) =“abcd”.
T is built as (Null, a, U)
Where U is (V, b,W ),
V = (Null, c, Null),W = (Null, d, Null).
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This tree is mirror(T ).
postorder(mirror(T )) =“dcba”,
“dcba” is the reversal of “abcd” so
[preorder(T )]R = postorder(mirror(T )) holds for T

Use structural induction to prove the following claim:

For every CharTree, T : [preorder(T )]R = postorder(mirror(T ))

Solution:
Let P (T ) be “[preorder(T )]R = postorder(mirror(T ))”. We show P (T ) holds for all CharTrees T by structural
induction.
Base case (T = Null):
LHS: [preorder(Null)]R = εR = ε
RHS: postorder(mirror(T )) = postorder(Null) = ε
Since LHS = RHS, P (Null) holds.

Inductive hypothesis: Suppose P (L), P (R) both holdfor arbitrary CharTrees L,R.

Inductive step:
Let T = CharTree(L, c,R) for an arbitrary c ∈ Σ. We want to show P (T ) i.e.,
[preorder(CharTree(L, c,R))]R = postorder(mirror(CharTree(L, c,R))).

[preorder(T )]R = [preorder(CharTree(L, c,R))]R Def of T
= [c · preorder(L) · preorder(R)]R Def of preorder
= preorder(R)R · preorder(L)R · cR Fact 1
= preorder(R)R · preorder(L)R · c Fact 2
= postorder(mirror(R)) · postorder(mirror(L)) · c By I.H.
= postorder(CharTree(mirror(R), c,mirror(L)) Def of postorder
= postorder(mirror(CharTree(L, c,R))) Def of mirror
= postorder(mirror(T )) Def of T

So P (CharTree(L, c,R)) holds.
By the principle of induction, P (T ) holds for all CharTrees T .
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