

Week 5 Workshop Solutions

0. Conceptual Review

(a) Definitions

a divides b : $a \mid b \leftrightarrow \exists k \in \mathbb{Z} (b = ka)$
 a is congruent to b modulo m : $a \equiv_m b \leftrightarrow m \mid (a - b)$

(b) How do you know if a multiplicative inverse does not exist?

A multiplicative inverse does not exist when $\gcd(a, b) \neq 1$.

(c) Bezout's theorem: If a and b are positive integers, then there exist integers s and t such that $\gcd(a, b)$ is equal to what?

$$\gcd(a, b) = sa + tb$$

(d) What is the Euclidean algorithm? What does it help us calculate?

The Euclidean algorithm helps us find $\gcd(a, b)$. The algorithm is as follows:

- Repeatedly use $\gcd(a, b) = \gcd(b, a \% b)$. Make sure a is the larger number.
- When you reach $\gcd(g, 0)$, return g .

(e) What is the extended Euclidean algorithm? What does it help us calculate?

We use the extended Euclidean algorithm to find s, t such that $\gcd(a, b) = sa + tb$.

t is the multiplicative inverse of b modulo a .

The multiplicative inverses can be used to solve modular equations.

The algorithm is as follows:

- Repeatedly use $\gcd(a, b) = \gcd(b, a \% b)$ and keep track of the equation $a = q * b + a \% b$ in every step.
- When you reach $\gcd(g, 0)$, g is the gcd. **Do not** keep track of the equation for this step. The final equation should have the gcd in the remainder ($a \% b$) position.
- Rearrange the equations from $a = q * b + a \% b$ to $a \% b = a - q * b$.
- The b in every equation was the $a \% b$ in the equation above it. Starting from the final equation substitute the equation above it in for b .
- Gather like terms but do not simplify more than that.
- Repeat the previous two steps until you have an equation of the form $\gcd(a, b) = sa + tb$. Note that the previous two steps are referred to as back substitution.

1. Extended Euclidean Algorithm and Multiplicative Inverse – Together!

Solve the equation and state the full set of solutions

$$311x \equiv_{2021} 3$$

(a) Use the Euclidean algorithm to find $\gcd(2021, 311)$. Make sure to keep track of the equation $a = q*b + a \% b$ in every step.

Solution:

$$\begin{array}{ll} \gcd(2021, 311) = \gcd(311, 2021 \% 311) = \gcd(311, 155) & 2021 = 6 * 311 + 155 \\ \gcd(311, 155) = \gcd(155, 311 \% 155) = \gcd(155, 1) & 311 = 2 * 155 + 1 \\ \gcd(155, 1) = \gcd(1, 155 \% 1) = \gcd(1, 0) = 1 & \text{no equation for this line} \end{array}$$

Note: I find this hard to keep track of. I prefer this way:

Starting with 2021 and 311:

$$\begin{array}{ll} 2021 = \underline{\quad} * 311 + \underline{\quad} = 6 * 311 + 155 & \text{(Take 311 and 155 from here and move to the next line)} \\ 311 = \underline{\quad} * 155 + \underline{\quad} = 2 * 155 + 1 & \text{(Take 155 and 1 from here and move to the next line)} \\ 155 = \underline{\quad} * 1 + \underline{\quad} = 155 * 1 + 0 & \text{(Throw this line out since it has a + 0 at the end.)} \end{array}$$

(b) Rearrange the equations from $a = q * b + a \% b$ to $a \% b = a - q * b$

Solution:

$$\begin{array}{ll} 2021 = 6 * 311 + 155 & 155 = 2021 - 6 * 311 \\ 311 = 2 * 155 + 1 & 1 = 311 - 2 * 155 \end{array} \quad \begin{array}{l} (1) \\ (2) \end{array}$$

(c) Use back substitution to find an equation of the form $\gcd(2021, 311) = s * 2021 + t * 311$. The t in this equation is the multiplicative inverse. If t is not in the range $0 \leq t < 2021$, add or subtract 2021 until you get a value for t that is in that range.

Solution:

The labels used below are from the previous step.

$$\begin{array}{ll} 1 = 311 - 2 * 155 & \text{Start with equation (2)} \\ = 311 - 2 * (2021 - 6 * 311) & \text{Sub in equation (1)} \\ = 311 - 2 * 2021 + 12 * 311 \\ = -2 * 2021 + 13 * 311 \end{array}$$

So 13 is the multiplicative inverse.

(d) Use the multiplicative inverse found in the previous step to solve the original equation $311x \equiv_{2021} 3$.

Solution:

Since 13 is the multiplicative inverse of 311 modulo 2021, we multiply both sides of our equation by 13:

$$\begin{array}{ll} 13 * 311x \equiv_{2021} 13 * 3 & [13 * 311 \equiv_{2021} 1] \\ x \equiv_{2021} 39 \end{array}$$

So the full set of solutions is $39 + 2021k$ for any integer k .

2. Extended Euclidean Algorithm and Multiplicative Inverse – Your Turn

Solve the equation and state the full set of solutions

$$38y \equiv_{101} 5$$

Solution:

First we use the Euclidean algorithm to compute $\gcd(101, 38)$ keeping track of our equations in every step

$$\begin{array}{ll}
 \gcd(101, 38) = \gcd(38, 101 \% 38) = \gcd(38, 25) & 101 = 2 * 38 + 25 \\
 \gcd(38, 25) = \gcd(25, 38 \% 25) = \gcd(25, 13) & 38 = 1 * 25 + 13 \\
 \gcd(25, 13) = \gcd(13, 25 \% 13) = \gcd(13, 12) & 25 = 1 * 13 + 12 \\
 \gcd(13, 12) = \gcd(12, 13 \% 12) = \gcd(12, 1) & 13 = 1 * 12 + 1 \\
 \gcd(12, 1) = \gcd(1, 12 \% 1) = \gcd(1, 0) & \text{no equation for this line}
 \end{array}$$

Now, we rearrange:

$$\begin{array}{ll}
 101 = 2 * 38 + 25 & 25 = 101 - 2 * 38 \\
 38 = 1 * 25 + 13 & 13 = 38 - 1 * 25 \\
 25 = 1 * 13 + 12 & 12 = 25 - 1 * 13 \\
 13 = 1 * 12 + 1 & 1 = 13 - 1 * 12
 \end{array}
 \begin{array}{l}
 (1) \\
 (2) \\
 (3) \\
 (4)
 \end{array}$$

Now we use back substitution to find an equation of the form $\gcd(101, 38) = s * 101 + t * 38$.

The labels used below are from the previous step.

$$\begin{aligned}
 1 &= 13 - 1 * 12 && \text{Start with equation (4)} \\
 &= 13 - 1 * (25 - 1 * 13) && \text{Sub in equation (3)} \\
 &= 13 - 1 * 25 + 1 * 13 \\
 &= -1 * 25 + 2 * 13 \\
 &= -1 * 25 + 2 * (38 - 1 * 25) && \text{Sub in equation (2)} \\
 &= -1 * 25 + 2 * 38 - 2 * 25 \\
 &= 2 * 38 - 3 * 25 \\
 &= 2 * 38 - 3 * (101 - 2 * 38) && \text{Sub in equation (1)} \\
 &= 2 * 38 - 3 * 101 + 6 * 38 \\
 &= -3 * 101 + 8 * 38
 \end{aligned}$$

So 8 is our multiplicative inverse.

We multiply both sides of our original equation $38y \equiv_{101} 5$ by 8.

$$\begin{aligned}
 8 \cdot 38y &\equiv_{101} 8 \cdot 5 && [8 \cdot 38 \equiv_{101} 1] \\
 y &\equiv_{101} 40
 \end{aligned}$$

So the full set of solutions is $40 + 101k$ for any integer k .

3. Induction: Warm-Up

Prove $5 \mid (6^n - 1)$ for all $n \in \mathbb{N}$ by induction.

Solution:

Let $P(n)$ be " $5 \mid 6^n - 1$ ". We will show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n .

Base Case ($n = 0$): $6^0 - 1 = 1 - 1 = 0 = 0 \cdot 5$, so $5 \mid 6^0 - 1$.

Inductive Hypothesis. Suppose $P(k)$ holds for some arbitrary integer $k \geq 0$.

Inductive Step.

Goal: Show $P(k + 1)$, i.e. $5 \mid (6^{k+1} - 1)$.

By the Inductive Hypothesis, we have that $5 \mid (6^k - 1)$. Then by definition of divides, $6^k - 1 = 5j$ for some $j \in \mathbb{Z}$. We have:

$$\begin{aligned} 6^k - 1 &= 5j && \text{IH} \\ 6^{k+1} - 6 &= 30j && \text{Multiply both sides by 6} \\ 6^{k+1} - 1 &= 30j + 5 && \text{Add 5 to both sides} \\ 6^{k+1} - 1 &= 5(6j + 1) && \text{Factor} \end{aligned}$$

By definition of divides, we have that $5 \mid (6^{k+1} - 1)$, as desired. So $P(k + 1)$ holds.

Conclusion. $P(n)$ is true for all $n \in \mathbb{N}$ by induction.

Alternate Solution for Inductive Step:

Goal: Show $P(k + 1)$, i.e. $5 \mid (6^{k+1} - 1)$.

$$\begin{aligned} 6^{k+1} - 1 &= 6^{k+1} - 1 + 0 \\ &= 6^{k+1} - 1 + (-5 + 5) \\ &= (6^{k+1} - 6) + 5 \\ &= 6(6^k - 1) + 5 \\ &= 6(5j) + 5 && [\text{by IH for some integer } j] \\ &= 5(6j + 1) \end{aligned}$$

By definition of divides, $5 \mid (6^{k+1} - 1)$ as required. So $P(k+1)$ holds.

4. Induction: Equality

Prove by induction that for every $n \in \mathbb{N}$, the following equality is true:

$$0 \cdot 2^0 + 1 \cdot 2^1 + 2 \cdot 2^2 + \cdots + n \cdot 2^n = (n - 1)2^{n+1} + 2.$$

Solution:

Let $P(n)$ be " $0 \cdot 2^0 + 1 \cdot 2^1 + 2 \cdot 2^2 + \cdots + n \cdot 2^n = (n - 1)2^{n+1} + 2$ ". We will prove $P(n)$ for all $n \in \mathbb{N}$ by induction on n .

Base Case ($n = 0$): $0 \cdot 2^0 = 0 = 0 = -2 + 2 = (0 - 1)2^{0+1} + 2$ therefore $P(0)$ is true. OR

LHS: $0 \cdot 2^0 = 0$

RHS: $(0 - 1)2^{0+1} + 2 = -2 + 2 = 0$

Since LHS = RHS, $P(0)$ is true.

Inductive Hypothesis. Suppose that $P(k)$ holds for some arbitrary integer $k \geq 0$.

Induction Step We show $P(k + 1)$:

$$\begin{aligned} 0 \cdot 2^0 + 1 \cdot 2^1 + 2 \cdot 2^2 + \cdots + (k + 1) \cdot 2^{k+1} \\ &= (0 \cdot 2^0 + 1 \cdot 2^1 + 2 \cdot 2^2 + \cdots + k \cdot 2^k) + (k + 1) \cdot 2^{k+1} && [\text{Show another term inside "..."}] \\ &= ((k - 1)2^{k+1} + 2) + (k + 1)2^{k+1} && [\text{Inductive Hypothesis}] \\ &= ((k - 1) + (k + 1))2^{k+1} + 2 && [\text{Group multiples of } 2^{k+1}] \\ &= (2k)2^{k+1} + 2 && [\text{Algebra}] \\ &= k2^{k+2} + 2 && [\text{Algebra}] \end{aligned}$$

Therefore $P(k + 1)$ holds.

Conclusion. $P(n)$ holds for all $n \in \mathbb{N}$ by induction.

5. Induction: Inequality

Prove that $2^n + 1 \leq 3^n$ for all positive integers n by induction.

Solution:

Let $P(n)$ be " $2^n + 1 \leq 3^n$ ". We will prove that $P(n)$ holds for all integers $n \geq 1$ by induction on n .

Base Case: ($n = 1$): $2^1 + 1 = 2 + 1 = 3 \leq 3 = 3^1$ therefore $P(1)$ holds. OR

LHS: $2^1 + 1 = 2 + 1 = 3$

RHS: $3^1 = 3$

$3 \leq 3$ (i.e., LHS \leq RHS), so $P(1)$ holds.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary integer $k \geq 1$.

Inductive Step:

Goal: Show $P(k + 1)$, i.e. $2^{k+1} + 1 \leq 3^{k+1}$.

$$\begin{aligned} 2^{k+1} + 1 &= 2 * 2^k + 1 \\ &< 2 * 2^k + 2 && \text{Since } 1 < 2 \\ &= 2(2^k + 1) \\ &\leq 2 * 3^k && \text{IH} \\ &< 3 * 3^k && \text{Since } 2 < 3 \\ &= 3^{k+1} \end{aligned}$$

So, $P(k + 1)$ holds.

Conclusion: Therefore, by the principle of induction, $P(n)$ holds for all positive integers n .

6. Induction: Divides

Prove that $9 \mid (n^3 + (n+1)^3 + (n+2)^3)$ for all integers $n > 1$ by induction.

Solution:

Let $P(n)$ be " $9 \mid n^3 + (n+1)^3 + (n+2)^3$ ". We will prove $P(n)$ for all integers $n > 1$ by induction on n .

Base Case ($n = 2$): $2^3 + (2+1)^3 + (2+2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2+1)^3 + (2+2)^3$, so $P(2)$ holds.

Inductive Hypothesis: Suppose $9 \mid k^3 + (k+1)^3 + (k+2)^3$ for an arbitrary integer $k \geq 2$. Note that this is equivalent to assuming that $k^3 + (k+1)^3 + (k+2)^3 = 9j$ for some integer j by the definition of divides.

Inductive Step: Goal: Show $9 \mid (k+1)^3 + (k+2)^3 + (k+3)^3$

$$\begin{aligned} (k+1)^3 + (k+2)^3 + (k+3)^3 &= (k+1)^3 + (k+2)^3 + (k+3)(k^2 + 6k + 9) && [\text{expanding}] \\ &= (k+1)^3 + (k+2)^3 + (k^3 + 6k^2 + 9k + 3k^2 + 18k + 27) && [\text{expanding}] \\ &= (k+1)^3 + (k+2)^3 + k^3 + 9k^2 + 27k + 27 && [\text{adding like terms}] \\ &= [k^3 + (k+1)^3 + (k+2)^3] + 9k^2 + 27k + 27 && [\text{rearranging}] \\ &= 9j + 9k^2 + 27k + 27 && [\text{by I.H., } j \in \mathbb{Z}] \\ &= 9(j + k^2 + 3k + 3) && [\text{factoring out 9}] \end{aligned}$$

By the definition of divides, $9 \mid (k+1)^3 + (k+2)^3 + (k+3)^3$ and $P(k+1)$ holds.

Conclusion: $P(n)$ holds for all integers $n > 1$ by the principle induction.

7. Inductively Odd

A 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and needs your help proving that it is correct.

```
public static boolean oddr(int n) {  
    if (n == 0)  
        return False;  
    else  
        return !oddr(n-1);  
}
```

Help the student by writing an inductive proof to prove that for all integers $n \geq 0$, the method `oddr` returns `True` if n is an odd number, and `False` if n is not an odd number (i.e. n is even). You may recall the definitions $\text{Odd}(n) := \exists x \in \mathbb{Z}(n = 2x + 1)$ and $\text{Even}(n) := \exists x \in \mathbb{Z}(n = 2x)$; Note that `!True = False` and `!False = True`.

Solution:

Let $P(n)$ be "`oddr(n)` returns `True` if n is odd and `False` if n is even". We will show that $P(n)$ is true for all integers $n \geq 0$ by induction on n .

Base Case: ($n = 0$)

0 is even, so $P(0)$ holds if `oddr(0)` returns `False`, which is exactly the base case of `oddr`. Therefore, $P(0)$ holds.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary integer $k \geq 0$.

Inductive Step: Since $k \geq 0$, $k + 1 \geq 1$ so `oddr(k+1)` is in the recursive case, and it returns `!oddr(k)`. We consider two cases: k is even, and k is odd.

Case 1: k is even.

By definition of even, $k = 2x$ for some integer x . Then, $k + 1 = 2x + 1$ is odd by definition.

By the inductive hypothesis, since k is even, `oddr(k)` returns `False`. Since `oddr(k+1)` returns `!oddr(k)`, it returns `!False = True`.

Since $k + 1$ is odd, this is the correct output, and $P(k+1)$ holds.

Case 2: k is odd.

By definition of odd, $k = 2x + 1$ for some integer x . Then, $k + 1 = 2x + 1 + 1 = 2x + 2 = 2(x + 1)$ is even by definition.

By the inductive hypothesis, since k is odd, `oddr(k)` returns `True`. Since `oddr(k+1)` returns `!oddr(k)`, it returns `!True = False`.

Since $k + 1$ is even, this is the correct output, and $P(k+1)$ holds.

Since these cases are exhaustive, we have shown $P(k + 1)$ always holds.

Conclusion: $P(n)$ is true for all integers $n \geq 0$ by the principle of induction.

8. Strong Induction: Recursively Defined Functions

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:

$$f(1) = 1 \text{ for } n = 1$$

$$f(2) = 4 \text{ for } n = 2$$

$$f(3) = 9 \text{ for } n = 3$$

$$f(n) = f(n-1) - f(n-2) + f(n-3) + 2(2n-3) \text{ for } n \geq 4$$

Prove that $f(n) = n^2$ for all integers $n \geq 1$ by strong induction.

Solution:

Let $P(n)$ be defined as " $f(n) = n^2$ ". We will prove $P(n)$ is true for all integers $n \geq 1$ by strong induction.

Base Cases ($n = 1, 2, 3$):

- $n = 1: f(1) = 1 = 1^2$.
- $n = 2: f(2) = 4 = 2^2$.
- $n = 3: f(3) = 9 = 3^2$

So the base cases hold.

Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 3$, we have $f(j) = j^2$ for every integer j from 1 to k .

In other words, assume $P(1) \wedge P(2) \wedge \dots \wedge P(k)$ for an arbitrary integer $k \geq 3$.

Inductive Step:

Goal: Show $P(k+1)$, i.e. show that $f(k+1) = (k+1)^2$.

$$\begin{aligned} f(k+1) &= f(k+1-1) - f(k+1-2) + f(k+1-3) + 2(2(k+1)-3) && \text{Definition of } f \\ &= f(k) - f(k-1) + f(k-2) + 2(2k-1) \\ &= k^2 - (k-1)^2 + (k-2)^2 + 2(2k-1) && \text{By IH} \\ &= k^2 - (k^2 - 2k + 1) + (k^2 - 4k + 4) + 4k - 2 \\ &= k^2 - k^2 + 2k - 1 + k^2 - 4k + 4 + 4k - 2 \\ &= (k^2 - k^2 + k^2) + (2k - 4k + 4k) + (-1 + 4 - 2) \\ &= k^2 + 2k + 1 \\ &= (k+1)^2 \end{aligned}$$

So $P(k+1)$ holds.

Conclusion: We have shown $P(n)$ holds for all integers $n \geq 1$ by the principle of induction.

9. Strong Induction: Packs of Candy

A store sells candy in packs of 4 and packs of 7. Let $P(n)$ be defined as "You are able to buy n packs of candy". For example, $P(3)$ is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that $P(n)$ is true for all $n \geq 18$. Use strong induction to prove this.

Hint: It may be easier to leave your base cases blank, write your inductive step, then figure out how many base cases you need, and go back and fill them in.

Solution:

Let $P(n)$ be defined as "You are able to buy n packs of candy". We will prove $P(n)$ is true for all integers $n \geq 18$ by strong induction.

Base Cases: ($n = 18, 19, 20, 21$):

- $n = 18$: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 ($18 = 2 * 7 + 1 * 4$).
- $n = 19$: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 ($19 = 1 * 7 + 3 * 4$).
- $n = 20$: 20 packs of candy can be made up of 5 packs of 4 ($20 = 0 * 7 + 5 * 4$).
- $n = 21$: 21 packs of candy can be made up of 3 packs of 7 ($21 = 3 * 7 + 0 * 4$).

Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 21$, we can buy j packs of candy for every integer j from 18 to k .

In other words, assume $P(18) \wedge \dots \wedge P(k)$ hold for some arbitrary integer $k \geq 21$.

Inductive Step:

Goal: Show $P(k + 1)$, i.e. show that we can buy $k + 1$ packs of candy.

We want to buy $k + 1$ packs of candy. Since $k \geq 21$, $(k + 1) - 4 = k - 3 \geq 18$.

Our inductive hypothesis covers everything from 18 to k and $18 \leq k - 3 \leq k$

Therefore $k - 3$ is covered by our inductive hypothesis.

So, by the I.H., we can buy exactly $k - 3$ packs of candy. We can add another 4 packs in order to buy $k + 1$ packs of candy, so $P(k + 1)$ is true.

Conclusion: By strong induction, $P(n)$ is true for all integers $n \geq 18$.

Note: Notice that we use the fact that $k - 3$ was covered by our inductive hypothesis as part of our proof. Since 18 is the smallest value in our domain, we need $k - 3 \geq 18$. Adding 3 to both sides this means $k \geq 21$. That's how we knew we needed the largest value in our base case to be 21.

Some people find it helpful to think of it this way: we had to use a fact from 4 steps back from $k + 1$ to $k - 3$ in the IS, so we needed 4 base cases.