CSE 390Z: Mathematics for Computation Workshop

Week 5 Workshop Solutions

0. Conceptual Review
(a) Definitions
a dividesb: a|b <« Jke€Z (b=ka)
a

a is congruent to b modulo m:

=nb < m|(a—0)

(b) How do you know if a multiplicative inverse does not exist?
A multiplicative inverse does not exist when ged(a, b) # 1.

(c) Bezout's theorem: If a and b are positive integers, then there exist integers s and t such that ged(a,b) is
equal to what?

gcd(a,b) = sa +tb

(d) What is the Euclidean algorithm? What does it help us calculate?
The Euclidean algorithm helps us find gcd(a, b). The algorithm is as follows:

Repeatedly use gcd(a,b) = ged(b, a%b). Make sure a is the larger number.

= When you reach gcd(g,0), return g.

(e) What is the extended Euclidean algorithm? What does it help us calculate?
We use the extended Euclidean algorithm to find s,¢ such that ged(a, b) = sa + tb.
t is the multiplicative inverse of b modulo a.
The multiplicative inverses can be used solve modular equations.
The algorithm is as follows:

Repeatedly use gcd(a,b) = ged(b, a%b) and keep track of the equation a = ¢ x b+ a%b in every
step.

When you reach gecd(g,0), g is the gcd. Do not keep track of the equation for this step. The final
equation should have the gcd in the remainder (a%b) position.

Rearrange the equations from a = ¢ x b + a%b to a%b = a — g * b.

The b in every equation was the a%b in the equation above it. Starting from the final equation
substitute the equation above it in for b.

Gather like terms but do not simplify more than that.

Repeat the previous two steps until you have an equation of the form gecd(a, b) = sa +tb. Note that
the previous two steps are referred to as back substitution.



1. Extended Euclidean Algorithm and Multiplicative Inverse — Together!

Solve the equation and state the full set of solutions
3llx =2021 3

(a) Use the Euclidean algorithm to find ged (2021, 311). Make sure to keep track of the equation a = gxb+a%b
in every step.

Solution:
ged(2021, 311) = ged(311, 2021 % 311) = ged(311, 155) 2021 = 6 % 311 + 155
ged(311,155) = ged(155,311 % 155) = ged(155, 1) 311 =2+ 155 + 1
ged(155,1) = ged(1,155 % 1) = ged(1,0) =1 no equation for this line

Note: | find this hard to keep track of. | prefer this way:
Starting with 2021 and 311:

2021 = __ %311+ ___ =6x%311+155 (Take 311 and 155 from here and move to the next line)
311 =__ %155+ _ =2x%x155+1 (Take 155 and 1 from here and move to the next line)
155 =__ %1+ __ =155%x1+0 (Throw this line out since it has a + 0 at the end.)

(b) Rearrange the equations from a = g x b+ a%b to a%b=a — g b

Solution:

2021 = 6 * 311 + 155 155 = 2021 — 6 % 311 (1)
311 =2%155+1 1=311-2%155 (2)

(c) Use back substitution to find an equation of the form gcd(2021,311) = s % 2021 + ¢ * 311. The ¢ in this
equation is the multiplicative inverse. If ¢ is not in the range 0 < ¢t < 2021, add or subtract 2021 until
you get a value for ¢ that is in that range.

Solution:
The labels used below are from the previous step.

1=311-2x%155 Start with equation (2)
=311 —2% (2021 — 6 % 311) Sub in equation (1)
=311 —-2%2021+ 12 % 311
= —2x%x2021 4+ 13 % 311

So 13 is the multiplicative inverse.

(d) Use the multiplicative inverse found in the previous step to solve the original equation 311x =9921 3.

Solution:
Since 13 is the multiplicative inverse of 311 modulo 2021, we multiply both sides of our equation by 13:
13- 311x =2021 13-3 [13 - 311 =92021 1]
T =2021 39

So the full set of solutions is 39 4+ 2021k for any integer k.



2. Extended Euclidean Algorithm and Multiplicative Inverse — Your Turn

Solve the equation and state the full set of solutions

38y =101 5

Solution:

First we use the Euclidean algorithm to compute gcd(101,38) keeping track of our equations in every step

ged(101,38) = ged(38, 101%38) = ged(38, 25)
ged(38,25) = ged (25, 38%25) = ged(25,13)
ged(25,13) = ged(13, 25%13) = ged(13, 12)
ged(13,12) = ged(12,13%12) = ged(12,1)
ged(12,1) = ged(1,12%1) = ged(1,0)

Now, we rearrange:

101 =2+ 38+ 25
38=1x25+13
25 =113+ 12
13=1%x1241

101 =238+ 25
38 =1%25413
25 =113+ 12
13=1%x12+1

no equation for this line

25 =101 —-2%38
13=38—-1%25
12=25-1%13
1=13-1%12

Now we use back substitution to find an equation of the form gcd(101,38) = s % 101 + ¢  38.

The labels used below are from the previous step.

1=13-1%12
=13—-1%(25—-1%x13)
=13-1%254+1x%13
=—-1%254+2%13
=—1%25+42x% (38 —1x%25)
=—1%25+2%38—2%25
=2%38—-3%25
=2%38—3x% (101 — 2% 38)
=2%38—-3*101+6*38
= —3* 101 + 8% 38

So 8 is our multiplicative inverse.

We multiply both sides of our original equation 38y =101 5 by 8.

8'38@/51018'5
y =101 40

So the full set of solutions is 40 4+ 101k for any integer k.

Start with equation (4)
Sub in equation (3)

Sub in equation (2)

Sub in equation (1)

[8 - 38 =101 1]

(1
(2
(3
(4

~— — — —



3. Induction: Warm-Up

Prove 5 | (6™ — 1) for all n € N by induction.

Solution:

Let P(n) be "5 ] 6™ —1". We will show P(n) holds for all n € N by induction on n.

Base Case (n=10): 6°-1=1-1=0=0-5,s05]6%— 1.
Inductive Hypothesis. Suppose P(k) holds for some arbitrary integer k£ > 0.

Inductive Step.

Goal: Show P(k+1),i.e 5| (651 —1).

By the Inductive Hypothesis, we have that 5 | (6 — 1). Then by definition of divides, 6 — 1 = 55 for
some j € Z. We have:

6" —1=5j IH
651 — 6 = 305 Multiply both sides by 6
6" —1=30j+5 Add 5 to both sides
65t —1=5(65+1) Factor

By definition of divides, we have that 5 | (657! — 1), as desired. So P(k + 1) holds.
Conclusion. P(n) is true for all n € N by induction.

Alternate Solution for Inductive Step:

Goal: Show P(k +1),i.e. 5| (651 —1).

6Ftl—1=61—140
=6 — 14 (=5+5)
= (6" —6)+5
=6(68 —1)+5
=6(5j)+5 [by IH for some integer j]
= 5(65 + 1)

By definition of divides, 5/(65T! — 1) as required. So P(k+1) holds.



4. Induction: Equality

Prove by induction that for every n € N, the following equality is true:
0'20+1-21—|—2-22+...+n.2n: (n_1)2n+1+2‘

Solution:
Let P(n) be “0-20 +1-24+2.22 ... 4 n.2" = (n — 1)2""1 + 2" We will prove P(n) for all n € N by
induction on n.

Base Case (n=10): 0-2°=0=0= —2+2= (0 — 1)2°"! + 2 therefore P(0) is true. OR
LHS: 0-2° =0
RHS: (0—1)2°"1 +2=-2+4+2=0
Since LHS = RHS, P(0) is true.

Inductive Hypothesis. Suppose that P(k) holds for some arbitrary integer k& > 0.

Induction Step We show P(k + 1):

0-2041-28 +2.22 4 ... 4 (k4 1) - 2FF!

=0-2+1-2" +2-22 4. 4 k- 2F) 4 (k4 1) - 281 [Show another term inside “.."]
= ((k—1)2F 4 2) + (k + 1)28+? [Inductive Hypothesis]
=((k=1)+ (k+1))2"1 42 [Group multiples of 28+1]
= (2k)28 T 42 [Algebra]
= k2F2 4 9 [Algebra]

Therefore P(k + 1) holds.
)

Conclusion. P(n) holds for all n € N by induction.



5. Induction: Inequality

Prove that 2 4+ 1 < 3" for all positive integers n by induction.

Solution:

Let P(n) be "2™ +1 < 3™". We will prove that P(n) holds for all integers n > 1 by induction on n.
Base Case: (n=1): 2! +1=2+1=3 < 3 = 3! therefore P(1) holds. OR

LHS: 2! +1=2+1=3

RHS: 3! =3

3 <3 (i.e., LHS < RHS), so P(1) holds.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary integer k > 1.

Inductive Step:

Goal: Show P(k + 1), i.e. 2k 1 < 3k+L,

2ktl 11 =92%2F 11

<2x2F 42 Since 1 < 2
=2(2F +1)

<2x3F IH
< 3x3F Since 2 < 3
— gk+1

So, P(k + 1) holds.
Conclusion: Therefore, by the principle of induction, P(n) holds for all positive integers n.



6. Induction: Divides

Prove that 9 | (n3 + (n + 1)3 + (n + 2)3) for all integers n > 1 by induction.

Solution:

Let P(n) be “9 | n3+ (n+1)3 + (n + 2)3". We will prove P(n) for all integers n > 1 by induction on n.

Base Case (n =2): 25+ (2+ 13+ (2+2)3=8+27+64=99=9-11,50 9|23+ (2+1)3 + (2+2)3, s0
P(2) holds.

Inductive Hypothesis: Suppose 9 | k2 + (k + 1) + (k + 2)2 for an arbitrary integer k£ > 2. Note that this is
equivalent to assuming that k3 + (k + 1)% + (k + 2)2 = 95 for some integer j by the definition of divides.

Inductive Step: | Goal: Show 9 | (k +1)% + (k +2)3 + (k +3)3

(E4+12 4+ (k+22 4+ (k+3)°2=((k+1>4 (k+2)%+ (k+3)(k* + 6k +9) [expanding]
= (k+1)* + (k+2)% + (k* + 6k* + 9k + 3k* + 18k + 27) [expanding]
= (k+1)°+ (k+2)° + k* + 9% + 27k + 27 [adding like terms]
= [k + (k+ 1)+ (k+2)% + 9k + 27k + 27 [rearranging]
=95 + 9k + 27k + 27 [by LH., j € Z]
=9(j +k*+3k+3) [factoring out 9]

By the definition of divides, 9 | (k + 1)3 + (k +2)3 + (k + 3)3 and P(k + 1) holds.

Conclusion: P(n) holds for all integers n > 1 by the principle induction.



7. Inductively Odd

A 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and
needs your help proving that it is correct.

public static boolean oddr(int n) {

if (n == 0)
return False;
else

return !oddr(n—1);

}

Help the student by writing an inductive proof to prove that for all integers n > 0, the method oddr returns
True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions
Odd(n) := 3z € Z(n =2z + 1) and Even(n) := 3z € Z(n = 2z); Note that !True = False and !False = True.

Solution:
Let P(n) be "oddr(n) returns True if n is odd and False if n is even". We will show that P(n) is true for all
integers n > 0 by induction on n.

Base Case: (n = 0)

0 is even, so P(0) holds if oddr(e) returns False, which is exactly the base case of oddr. Therefore, P(0) holds.
Inductive Hypothesis: Suppose P(k) holds for an arbitrary integer k& > 0.

Inductive Step: Since £ > 0, k 4+ 1 > 1 so oddr(k+1) is in the recursive case, and it returns !oddr(k). We
consider two cases: k is even, and k is odd.

Case 1: k is even.

By definition of even, k = 2z for some integer z. Then, £k + 1 =2z + 1 is odd by definition.

By the inductive hypothesis, since k is even, oddr(k) returns False. Since oddr(k+1) returns !oddr(k), it returns
'False = True.

Since k + 1 is odd, this is the correct output, and P(k+1) holds.

Case 2: k is odd.

By definition of odd, k = 2z + 1 for some integer . Then, k+1=2z+1+1=2x+2=2(z+ 1) is even by
definition.

By the inductive hypothesis, since k is odd, oddr(k) returns True. Since oddr(k+1) returns 'oddr(k), it returns
ITrue = False.

Since k + 1 is even, this is the correct output, and P(k+1) holds.

Since these cases are exhaustive, we have shown P(k + 1) always holds.

Conclusion: P(n) is true for all integers n > 0 by the principle of induction.



8. Strong Induction: Recursively Defined Functions
Consider the function f(n) defined for integers n > 1 as follows:
fl)y=1forn=1

f(2)=4forn=2

fB)=9forn=3

fm)=fn=1)—fn—2)+ f(n —3)+2(2n —3) forn > 4

Prove that f(n) = n? for all integers n > 1 by strong induction.
Solution:
Let P(n) be defined as " f(n) = n2". We will prove P(n) is true for all integers n > 1 by strong induction.
Base Cases (n =1,2,3):
= n=1: f(1)=1=12
= =2 f(2)=4=22
= n=23 f(3)=9=3

So the base cases hold.

Inductive Hypothesis: Assume that for some arbitrary integer k > 3, we have f(j) = j* for every integer j
from 1 to k.
In other words, assume P(1) A P(2) A ... A P(k) for an arbitrary integer k > 3.

Inductive Step:

Goal: Show P(k + 1), i.e. show that f(k+1) = (k+1)2

flk+1)=fk+1-1)—f(k+1-2)+ f(k+1-3)+22(k+1)—3) Definition of f
= f(k) = f(k—=1)+ f(k—2) +2(2k - 1)
=k (k-1 +(k-2)2+202k 1) By IH
=k — (K =2k + 1)+ (kK> — 4k +4) + 4k — 2
=k — k24 2%k — 14+ k> —4dk+4+4k -2
= (K2 — k2 + kY + 2k — 4k +4k) + (-1 +4—2)
=k 42k +1
= (k+ 1)

So P(k + 1) holds.

Conclusion: We have shown P(n) holds for all integers n > 1 by the principle of induction.



9. Strong Induction: Packs of Candy

A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy".
For example, P(3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it
turns out that P(n) is true for all n > 18. Use strong induction to prove this.

Hint: It may be easier to leave your base cases blank, write your inductive step, then figure out how many base
cases you need, and go back and fill them in.

Solution:
Let P(n) be defined as "You are able to buy n packs of candy". We will prove P(n) is true for all integers
n > 18 by strong induction.

Base Cases: (n = 18,19,20,21):

» n = 18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18 =27+ 1% 4).
» n =19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19 =1% 7+ 3x4).
» n = 20: 20 packs of candy can be made up of 5 packs of 4 (20 =0*7 + 5% 4).
» n = 21: 21 packs of candy can be made up of 3 packs of 7 (21 =3 %7+ 0x4).
Inductive Hypothesis: Assume that for some arbitrary integer k£ > 21, we can buy j packs of candy for every

integer j from 18 to k.
In other words, assume P(18) A... AP(k) hold for some arbitrary integer k& > 21.

Inductive Step:

‘Goal: Show P(k + 1), i.e. show that we can buy k + 1 packs of candy.

We want to buy k£ + 1 packs of candy. Since k > 21, (k+1)—4 =%k —3 > 18.

Our inductive hypothesis covers everything from 18 to k and 18 < k —3 < k

Therefore k — 3 is covered by our inductive hypothesis.

So, by the I.H., we can buy exactly k — 3 packs of candy. We can add another 4 packs in order to buy
k + 1 packs of candy, so P(k + 1) is true.

Conclusion: By strong induction, P(n) is true for all integers n > 18.

Note: Notice that we use the fact that £k — 3 was covered by our inductive hypothesis as part of our proof.
Since 18 is the smallest value in our domain, we need &k — 3 > 18. Adding 3 to both sides this means k > 21.
That's how we knew we needed the largest value in our base case to be 21.

Some people find it helpful to think of it this way: we had to use a fact from 4 steps back from k+ 1 to k — 3
in the IS, so we needed 4 base cases.
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