
CSE 390Z: Mathematics for Computation Workshop
Week 5 Workshop Solutions

0. Conceptual Review
(a) Definitions

a divides b: a | b ↔ ∃k ∈ Z (b = ka)
a is congruent to b modulo m: a ≡m b ↔ m | (a− b)

(b) How do you know if a multiplicative inverse does not exist?
A multiplicative inverse does not exist when gcd(a, b) 6= 1.

(c) Bezout’s theorem: If a and b are positive integers, then there exist integers s and t such that gcd(a, b) is
equal to what?

gcd(a, b) = sa+ tb

(d) What is the Euclidean algorithm? What does it help us calculate?
The Euclidean algorithm helps us find gcd(a, b). The algorithm is as follows:

• Repeatedly use gcd(a, b) = gcd(b, a%b). Make sure a is the larger number.
• When you reach gcd(g, 0), return g.

(e) What is the extended Euclidean algorithm? What does it help us calculate?
We use the extended Euclidean algorithm to find s, t such that gcd(a, b) = sa+ tb.
t is the multiplicative inverse of b modulo a.
The multiplicative inverses can be used solve modular equations.
The algorithm is as follows:

• Repeatedly use gcd(a, b) = gcd(b, a%b) and keep track of the equation a = q ∗ b + a%b in every
step.

• When you reach gcd(g, 0), g is the gcd. Do not keep track of the equation for this step. The final
equation should have the gcd in the remainder (a%b) position.

• Rearrange the equations from a = q ∗ b+ a%b to a%b = a− q ∗ b.
• The b in every equation was the a%b in the equation above it. Starting from the final equation

substitute the equation above it in for b.
• Gather like terms but do not simplify more than that.
• Repeat the previous two steps until you have an equation of the form gcd(a, b) = sa+ tb. Note that

the previous two steps are referred to as back substitution.
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1. Extended Euclidean Algorithm and Multiplicative Inverse – Together!
Solve the equation and state the full set of solutions

311x ≡2021 3

(a) Use the Euclidean algorithm to find gcd(2021, 311). Make sure to keep track of the equation a = q∗b+a%b
in every step.

Solution:

gcd(2021, 311) = gcd(311, 2021 % 311) = gcd(311, 155) 2021 = 6 ∗ 311 + 155

gcd(311, 155) = gcd(155, 311 % 155) = gcd(155, 1) 311 = 2 ∗ 155 + 1

gcd(155, 1) = gcd(1, 155 % 1) = gcd(1, 0) = 1 no equation for this line

Note: I find this hard to keep track of. I prefer this way:
Starting with 2021 and 311:
2021 = __ ∗ 311 + __ = 6 ∗ 311 + 155 (Take 311 and 155 from here and move to the next line)
311 = __ ∗ 155 + __ = 2 ∗ 155 + 1 (Take 155 and 1 from here and move to the next line)
155 = __ ∗ 1 + __ = 155 ∗ 1 + 0 (Throw this line out since it has a + 0 at the end.)

(b) Rearrange the equations from a = q ∗ b+ a%b to a%b = a− q ∗ b

Solution:

2021 = 6 ∗ 311 + 155 155 = 2021− 6 ∗ 311 (1)
311 = 2 ∗ 155 + 1 1 = 311− 2 ∗ 155 (2)

(c) Use back substitution to find an equation of the form gcd(2021, 311) = s ∗ 2021 + t ∗ 311. The t in this
equation is the multiplicative inverse. If t is not in the range 0 ≤ t < 2021, add or subtract 2021 until
you get a value for t that is in that range.

Solution:
The labels used below are from the previous step.

1 = 311− 2 ∗ 155 Start with equation (2)
= 311− 2 ∗ (2021− 6 ∗ 311) Sub in equation (1)
= 311− 2 ∗ 2021 + 12 ∗ 311
= −2 ∗ 2021 + 13 ∗ 311

So 13 is the multiplicative inverse.

(d) Use the multiplicative inverse found in the previous step to solve the original equation 311x ≡2021 3.

Solution:
Since 13 is the multiplicative inverse of 311 modulo 2021, we multiply both sides of our equation by 13:

13 · 311x ≡2021 13 · 3 [13 · 311 ≡2021 1]

x ≡2021 39

So the full set of solutions is 39 + 2021k for any integer k.
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2. Extended Euclidean Algorithm and Multiplicative Inverse – Your Turn
Solve the equation and state the full set of solutions

38y ≡101 5

.
Solution:
First we use the Euclidean algorithm to compute gcd(101,38) keeping track of our equations in every step

gcd(101, 38) = gcd(38, 101%38) = gcd(38, 25) 101 = 2 ∗ 38 + 25

gcd(38, 25) = gcd(25, 38%25) = gcd(25, 13) 38 = 1 ∗ 25 + 13

gcd(25, 13) = gcd(13, 25%13) = gcd(13, 12) 25 = 1 ∗ 13 + 12

gcd(13, 12) = gcd(12, 13%12) = gcd(12, 1) 13 = 1 ∗ 12 + 1

gcd(12, 1) = gcd(1, 12%1) = gcd(1, 0) no equation for this line

Now, we rearrange:

101 = 2 ∗ 38 + 25 25 = 101− 2 ∗ 38 (1)
38 = 1 ∗ 25 + 13 13 = 38− 1 ∗ 25 (2)
25 = 1 ∗ 13 + 12 12 = 25− 1 ∗ 13 (3)
13 = 1 ∗ 12 + 1 1 = 13− 1 ∗ 12 (4)

Now we use back substitution to find an equation of the form gcd(101, 38) = s ∗ 101 + t ∗ 38.
The labels used below are from the previous step.

1 = 13− 1 ∗ 12 Start with equation (4)
= 13− 1 ∗ (25− 1 ∗ 13) Sub in equation (3)
= 13− 1 ∗ 25 + 1 ∗ 13
= −1 ∗ 25 + 2 ∗ 13
= −1 ∗ 25 + 2 ∗ (38− 1 ∗ 25) Sub in equation (2)
= −1 ∗ 25 + 2 ∗ 38− 2 ∗ 25
= 2 ∗ 38− 3 ∗ 25
= 2 ∗ 38− 3 ∗ (101− 2 ∗ 38) Sub in equation (1)
= 2 ∗ 38− 3 ∗ 101 + 6 ∗ 38
= −3 ∗ 101 + 8 ∗ 38

So 8 is our multiplicative inverse.
We multiply both sides of our original equation 38y ≡101 5 by 8.

8 · 38y ≡101 8 · 5 [8 · 38 ≡101 1]

y ≡101 40

So the full set of solutions is 40 + 101k for any integer k.
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3. Induction: Warm-Up
Prove 5 | (6n − 1) for all n ∈ N by induction.
Solution:
Let P (n) be “5 | 6n − 1”. We will show P (n) holds for all n ∈ N by induction on n.

Base Case (n = 0): 60 − 1 = 1− 1 = 0 = 0 · 5, so 5 | 60 − 1.

Inductive Hypothesis. Suppose P (k) holds for some arbitrary integer k ≥ 0.

Inductive Step.
Goal: Show P (k + 1), i.e. 5 | (6k+1 − 1).

By the Inductive Hypothesis, we have that 5 | (6k − 1). Then by definition of divides, 6k − 1 = 5j for
some j ∈ Z. We have:

6k − 1 = 5j IH
6k+1 − 6 = 30j Multiply both sides by 6
6k+1 − 1 = 30j + 5 Add 5 to both sides
6k+1 − 1 = 5(6j + 1) Factor

By definition of divides, we have that 5 | (6k+1 − 1), as desired. So P(k + 1) holds.
Conclusion. P(n) is true for all n ∈ N by induction.

Alternate Solution for Inductive Step:

Goal: Show P (k + 1), i.e. 5 | (6k+1 − 1).

6k+1 − 1 = 6k+1 − 1 + 0

= 6k+1 − 1 + (−5 + 5)

= (6k+1 − 6) + 5

= 6(6k − 1) + 5

= 6(5j) + 5 [by IH for some integer j]
= 5(6j + 1)

By definition of divides, 5|(6k+1 − 1) as required. So P(k+1) holds.
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4. Induction: Equality
Prove by induction that for every n ∈ N, the following equality is true:

0 · 20 + 1 · 21 + 2 · 22 + · · ·+ n · 2n = (n− 1)2n+1 + 2.

Solution:
Let P (n) be “0 · 20 + 1 · 21 + 2 · 22 + · · · + n · 2n = (n − 1)2n+1 + 2”. We will prove P (n) for all n ∈ N by
induction on n.

Base Case (n = 0): 0 · 20 = 0 = 0 = −2 + 2 = (0− 1)20+1 + 2 therefore P (0) is true. OR
LHS: 0 · 20 = 0
RHS: (0− 1)20+1 + 2 = −2 + 2 = 0
Since LHS = RHS, P (0) is true.

Inductive Hypothesis. Suppose that P (k) holds for some arbitrary integer k ≥ 0.

Induction Step We show P (k + 1):

0 · 20 + 1 · 21 + 2 · 22 + · · ·+ (k + 1) · 2k+1

= (0 · 20 + 1 · 21 + 2 · 22 + · · ·+ k · 2k) + (k + 1) · 2k+1 [Show another term inside “...”]
= ((k − 1)2k+1 + 2) + (k + 1)2k+1 [Inductive Hypothesis]
= ((k − 1) + (k + 1))2k+1 + 2 [Group multiples of 2k+1]
= (2k)2k+1 + 2 [Algebra]
= k2k+2 + 2 [Algebra]

Therefore P (k + 1) holds.
Conclusion. P (n) holds for all n ∈ N by induction.
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5. Induction: Inequality
Prove that 2n + 1 ≤ 3n for all positive integers n by induction.
Solution:
Let P (n) be "2n + 1 ≤ 3n". We will prove that P (n) holds for all integers n ≥ 1 by induction on n.
Base Case: (n = 1): 21 + 1 = 2 + 1 = 3 ≤ 3 = 31 therefore P (1) holds. OR
LHS: 21 + 1 = 2 + 1 = 3
RHS: 31 = 3
3 ≤ 3 (i.e., LHS ≤ RHS), so P (1) holds.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary integer k ≥ 1.
Inductive Step:

Goal: Show P (k + 1), i.e. 2k+1 + 1 ≤ 3k+1.

2k+1 + 1 = 2 ∗ 2k + 1

< 2 ∗ 2k + 2 Since 1 < 2

= 2(2k + 1)

≤ 2 ∗ 3k IH
< 3 ∗ 3k Since 2 < 3

= 3k+1

So, P (k + 1) holds.
Conclusion: Therefore, by the principle of induction, P (n) holds for all positive integers n.
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6. Induction: Divides
Prove that 9 | (n3 + (n+ 1)3 + (n+ 2)3) for all integers n > 1 by induction.
Solution:
Let P (n) be “9 | n3 + (n+ 1)3 + (n+ 2)3”. We will prove P (n) for all integers n > 1 by induction on n.

Base Case (n = 2): 23 + (2 + 1)3 + (2 + 2)3 = 8 + 27 + 64 = 99 = 9 · 11, so 9 | 23 + (2 + 1)3 + (2 + 2)3, so
P (2) holds.

Inductive Hypothesis: Suppose 9 | k3 + (k + 1)3 + (k + 2)3 for an arbitrary integer k ≥ 2. Note that this is
equivalent to assuming that k3 + (k+1)3 + (k+2)3 = 9j for some integer j by the definition of divides.

Inductive Step: Goal: Show 9 | (k + 1)3 + (k + 2)3 + (k + 3)3

(k + 1)3 + (k + 2)3 + (k + 3)3 = (k + 1)3 + (k + 2)3 + (k + 3)(k2 + 6k + 9) [expanding]
= (k + 1)3 + (k + 2)3 + (k3 + 6k2 + 9k + 3k2 + 18k + 27) [expanding]
= (k + 1)3 + (k + 2)3 + k3 + 9k2 + 27k + 27 [adding like terms]
= [k3 + (k + 1)3 + (k + 2)3] + 9k2 + 27k + 27 [rearranging]
= 9j + 9k2 + 27k + 27 [by I.H., j ∈ Z]
= 9(j + k2 + 3k + 3) [factoring out 9]

By the definition of divides, 9 | (k + 1)3 + (k + 2)3 + (k + 3)3 and P (k + 1) holds.

Conclusion: P (n) holds for all integers n > 1 by the principle induction.
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7. Inductively Odd
A 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and
needs your help proving that it is correct.

1 public static boolean oddr(int n) {
2 if (n == 0)
3 return False;
4 else
5 return !oddr(n−1);
6 }

Help the student by writing an inductive proof to prove that for all integers n ≥ 0, the method oddr returns
True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions
Odd(n) := ∃x ∈ Z(n = 2x+ 1) and Even(n) := ∃x ∈ Z(n = 2x); Note that !True = False and !False = True.

Solution:
Let P(n) be "oddr(n) returns True if n is odd and False if n is even". We will show that P(n) is true for all
integers n ≥ 0 by induction on n.

Base Case: (n = 0)
0 is even, so P(0) holds if oddr(0) returns False, which is exactly the base case of oddr. Therefore, P(0) holds.
Inductive Hypothesis: Suppose P(k) holds for an arbitrary integer k ≥ 0.
Inductive Step: Since k ≥ 0, k + 1 ≥ 1 so oddr(k+1) is in the recursive case, and it returns !oddr(k). We
consider two cases: k is even, and k is odd.

Case 1: k is even.
By definition of even, k = 2x for some integer x. Then, k + 1 = 2x+ 1 is odd by definition.
By the inductive hypothesis, since k is even, oddr(k) returns False. Since oddr(k+1) returns !oddr(k), it returns
!False = True.
Since k + 1 is odd, this is the correct output, and P(k+1) holds.

Case 2: k is odd.
By definition of odd, k = 2x+ 1 for some integer x. Then, k+ 1 = 2x+ 1+ 1 = 2x+ 2 = 2(x+ 1) is even by
definition.
By the inductive hypothesis, since k is odd, oddr(k) returns True. Since oddr(k+1) returns !oddr(k), it returns
!True = False.
Since k + 1 is even, this is the correct output, and P(k+1) holds.

Since these cases are exhaustive, we have shown P(k + 1) always holds.

Conclusion: P(n) is true for all integers n ≥ 0 by the principle of induction.
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8. Strong Induction: Recursively Defined Functions
Consider the function f(n) defined for integers n ≥ 1 as follows:
f(1) = 1 for n = 1
f(2) = 4 for n = 2
f(3) = 9 for n = 3
f(n) = f(n− 1)− f(n− 2) + f(n− 3) + 2(2n− 3) for n ≥ 4

Prove that f(n) = n2 for all integers n ≥ 1 by strong induction.
Solution:
Let P(n) be defined as " f(n) = n2". We will prove P (n) is true for all integers n ≥ 1 by strong induction.

Base Cases (n = 1, 2, 3):

• n = 1: f(1) = 1 = 12.
• n = 2: f(2) = 4 = 22.
• n = 3: f(3) = 9 = 32

So the base cases hold.

Inductive Hypothesis: Assume that for some arbitrary integer k ≥ 3, we have f(j) = j2 for every integer j
from 1 to k.
In other words, assume P (1) ∧ P (2) ∧ ... ∧ P (k) for an arbitrary integer k ≥ 3.

Inductive Step:

Goal: Show P (k + 1), i.e. show that f(k + 1) = (k + 1)2.

f(k + 1) = f(k + 1− 1)− f(k + 1− 2) + f(k + 1− 3) + 2(2(k + 1)− 3) Definition of f
= f(k)− f(k − 1) + f(k − 2) + 2(2k − 1)

= k2 − (k − 1)2 + (k − 2)2 + 2(2k − 1) By IH
= k2 − (k2 − 2k + 1) + (k2 − 4k + 4) + 4k − 2

= k2 − k2 + 2k − 1 + k2 − 4k + 4 + 4k − 2

= (k2 − k2 + k2) + (2k − 4k + 4k) + (−1 + 4− 2)

= k2 + 2k + 1

= (k + 1)2

So P(k + 1) holds.

Conclusion: We have shown P(n) holds for all integers n ≥ 1 by the principle of induction.
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9. Strong Induction: Packs of Candy
A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy".
For example, P (3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it
turns out that P(n) is true for all n ≥ 18. Use strong induction to prove this.

Hint: It may be easier to leave your base cases blank, write your inductive step, then figure out how many base
cases you need, and go back and fill them in.
Solution:
Let P(n) be defined as "You are able to buy n packs of candy". We will prove P (n) is true for all integers
n ≥ 18 by strong induction.

Base Cases: (n = 18, 19, 20, 21):

• n = 18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18 = 2 ∗ 7 + 1 ∗ 4).
• n = 19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19 = 1 ∗ 7 + 3 ∗ 4).
• n = 20: 20 packs of candy can be made up of 5 packs of 4 (20 = 0 ∗ 7 + 5 ∗ 4).
• n = 21: 21 packs of candy can be made up of 3 packs of 7 (21 = 3 ∗ 7 + 0 ∗ 4).

Inductive Hypothesis: Assume that for some arbitrary integer k ≥ 21, we can buy j packs of candy for every
integer j from 18 to k.
In other words, assume P(18) ∧... ∧P(k) hold for some arbitrary integer k ≥ 21.

Inductive Step:

Goal: Show P (k + 1), i.e. show that we can buy k + 1 packs of candy.

We want to buy k + 1 packs of candy. Since k ≥ 21, (k + 1)− 4 = k − 3 ≥ 18.
Our inductive hypothesis covers everything from 18 to k and 18 ≤ k − 3 ≤ k
Therefore k − 3 is covered by our inductive hypothesis.
So, by the I.H., we can buy exactly k − 3 packs of candy. We can add another 4 packs in order to buy
k + 1 packs of candy, so P(k + 1) is true.

Conclusion: By strong induction, P(n) is true for all integers n ≥ 18.

Note: Notice that we use the fact that k − 3 was covered by our inductive hypothesis as part of our proof.
Since 18 is the smallest value in our domain, we need k − 3 ≥ 18. Adding 3 to both sides this means k ≥ 21.
That’s how we knew we needed the largest value in our base case to be 21.
Some people find it helpful to think of it this way: we had to use a fact from 4 steps back from k + 1 to k − 3
in the IS, so we needed 4 base cases.
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