CSE 390z: Mathematics for Computation Workshop

Week 4 Workshop Solutions

Conceptual Review
(a) How do we prove a "for all" implication in a formal proof?
E.g., Vz(Even(z) — Odd(x + 1)), Domain: integers

Solution:
Let a be an arbitrary integer

1.1.1 Even(a) Assumption

1.1.n Odd(a+1)
1.1 Even(a) = Odd(a + 1) Direct proof
1. Vz(Even(z) — Odd(z + 1)) Intro V

(b) How do we prove a "for all" implication in an English proof?
E.g., The sum of any even integer and 1 is odd.

Solution:

Let a be an arbitrary integer.
Suppose a is even.

So [by definition], a + 1 is odd.
Since a was arbitrary, we have shown that the sum of every even integer and 1 is odd.

(c) What's a good strategy for writing English proofs?

Solution:
(1) Introduce an arbitrary variable for each V quantifier (if there are any).
(2)
(3)
(4) Manipulate towards the goal (using creativity, algebra, etc.).
)
)

(5
(

If there is an implication, assume the left-hand side of the statement (assume the premise).

Unroll any definitions.

Re-roll your definitions to derive the desired outcome.

6) Conclude by summarizing your claim.

(d) What is the definition of "a divides b"?

Solution:

For a,b € Z with a # 0:
al|b = JFkeZ (b=ka)

(e) What is the Division Theorem?



Solution:

For a,b € Z with b > 0, there exist unique ¢, € Z with 0 < r < b, such that a = qb + r.
(f) What's the definition of "a is congruent to b mod m" (a =, b)?

Solution:

For a,b € Z with m >0
a=pb:= m|(a—"b)

1 Formal Proofs: More Quantifiers (from end of last week)
(a) Given Vz(T(z) — M(x)) and 32T (x), prove that JxM(x).

Solution:
1. Ve(T'(z) — M(x)) (Given)
2. 32T (x) (Given)
3. T(r)* (Elim 3; 2)
4. T(r) — M(r)** (Elim V; 1)
5. M(r) (Modus Ponens; 3, 4)
6. JzxM(x) (Intro 3; 5)

* 1 is the value that satisfies T'(x)
** We can pick any value we want. We intentionally pick the r from step 3.

(b) Given Va(P(z) — Q(z)), prove that (3zP(z)) — (JyQ(y)).

Solution:
1. Vz(P(z) — Q(x)) (Given)
2.1. JxP(x) (Assumption)
22. P(r)* (Elim 3; 2.1)
2.3. P(r) = Q(r)** (Elim V¥; 1)
2.4. Q(r) (Modus Ponens; 2.2, 2.3)
2.5. FyQ(y) (Intro 3; 2.4)
2. (FzP(z)) — (FyQ(y)) (Direct Proof Rule)

* r is the value that satisfies P(z)
** We can pick any value we want. We intentionally pick the r from step 2.2



2. English Proof

Let the predicates Odd(x) and Even(x) be defined as follows where the domain is the integers:

Odd(z) := 3k (r =2k +1)
Even(z) := 3k (v = 2k)

Write and English proof of the following claim:

(a)

(f)

(h)

VaVy[(Even(xz) A Odd(y)) — Odd(x + y)]

Translate the claim to English.

Solution:

The sum of an even integer and an odd integer is odd.

Declare any arbitrary variables you may need.

Solution:

Let x and y be arbitrary integers.
Assume the left side of the implication.
Solution:

Suppose z is even and y is odd.

Unroll the definitions from your assumptions.

Solution:

Then by definition of even, there exists some integer k such that x = 2k, and by definition of odd, there
exists some integer j such that y = 25 + 1.

Note: A common mistake here is to declare k and j as arbitrary. They're not arbitrary — they're the
specific integers that satisfy the equations x = 2k and y = 25 + 1.

Manipulate what you have towards your goal.

Solution:

Adding x and y, we see that: z+y = (2k)+ (25 +1) =2k +2j+1=2(k+j) + L.

Reroll definitions into the right side of the implication.

Solution:

By definition of odd, = + y is odd.

Conclude that you have proved the claim.

Solution:

Since = and y were arbitrary, we conclude that for all integers x and y, if = is even and y is odd then
x + 1y is odd.

Now take these proof parts and assemble them into one cohesive English proof.



Solution:

Let = and y be arbitrary integers. Suppose x is even and y is odd. Then by definition of even, there
exists some integer k such that x = 2k, and by definition of odd, there exists some integer j such that
y=2j+ 1. Adding = and y we see that: z+y = (2k)+(2j+1)=2k+2j+1=2(k+j)+ 1. By
definition of odd, z + y is odd. Since x and y were both arbitrary, we conclude that for all integers x and
y, if = is even and y is odd, then x + y is odd.

3. Divisibility Proof

Consider the following claim where the domain is the integers:
VnVd ((d | n) — (—d | n))
(a) Write a formal proof to show that the claim holds.

Solution:

Let @ and b be arbitrary integers.

111 b]a (Assumption)

1.1.2 3k (a = kb) (Definition of divides: 1.1.1)

1.1.3 a=jb (Elim 3: 1.1.2)

114 a=(—j)(-b) (Algebra: 1.1.3)

1.1.5 Jk (a = k(-b)) (Intro 3: 1.1.4)

116 —b|a (Definition of divides: 1.1.5)

11 (b|a)—=(=b]|a) (Direct proof)

1. Vn¥d ((d | n) = (—=d | n)) (Intro V)

(b) Translate the claim into English.

Solution:

For integers n,d, if d | n, then —d | n.

(c) Write an English proof to show that the claim holds.

Solution:

Let d,n be arbitrary integers, and suppose d|n. By definition of divides, there exists some integer k such
that n = kd = 1- kd. Note that —1- —1 = 1. Substituting, we see n = (—1)(—1)kd. Rearranging, we
have n = (—k)(—d). Therefore, by definition of divides, —d|n. Since d and n were arbitrary, we have
shown that for all integers d and n, if d|n, then —d|n.

4. Modular Computation

(a) Circle the statements below that are true.
Recall for a,b € Z: alb := Jk € Z (b = ka).
(a) 13

b) 3|1

c) 2/2018

d)

)

€

—2/12

(
(
(
() 1-2-3-4[1-2-3-4-5



Solution:

(a) 1|13 True:3=1-3
(b) 3|1 False
(c) 2/2018  True: 2018 = 2 - 1009
(d) —2/12 True: 12=—-2-—6
() 1-2-3-4/1-2-3-4-5 True: 1-2-3-4-5=5-(1-2-3-4)
(b) Circle the statements below that are true.
Recall for a,b,m € Z and m > 0: a =, b = m|(a —b).
(a) —3=33
(b) 0 =9 9000
(c) 44=713
(d) —58 =5 707
(e) 58 =5 707
Solution:
(a) -3=33 True: -3—-3=-6, 3|—6
(b) 0 =9 9000 True: 0 — 9000 = —9000, 9| — 9000
(c) 44—7 13  False: 44—-13=31 31=7-4+3..7¢31
(d) —58 =5 707 True: —58 — 707 = —765 5| — 765
(e) 58 =5 707 False: 58 — 707 = —649 51 —649

5. Modular Multiplication

Write an English proof of the following claim: For all integers a, b, ¢, d, m with m > 0, if a =, b and ¢ =, d,
then ac =, bd.

Solution:

Let m > 0, a,b, ¢, d be arbitrary integers. Suppose that a =, b and ¢ =,,, d. Then by definition of congruence,
m | (a—b) and m | (¢ — d). Then by definition of divides, there exists some integer k such that a — b = km,
and there exists some integer j such that c —d = jm. Then a = b+ km and ¢ = d + jm. Multiplying gives us:

ac = (b+ km)(d + jm) = bd + kmd + bjm + kjm? = bd + m(kd + bj + kjm)

Subtracting bd from both sides we get, ac — bd = m(kd + bj + kjm). By definition of divides, m | ac — bd.
Then by definition of congruence, ac =,, bd. Since m > 0, a, b, ¢, d were arbitrary integers, the claim holds for
all integers a, b, ¢, d and positive integers m.

6. Mod Practice

Write an English proof of the following claim: For all integers n, if n is not divisible by 3, then n? =3 1.
You may use, without proof, that for any integers a, m with m > 0, m | a iff a =, 0.

Solution:

Let n be an arbitrary integer.
Suppose that n is not divisible by 3.



Since 3 | n iff n =3 0 and 3 1 n, we know that n #3 0. The only options remaining are n =3 1 or n =3 2.
We continue by cases.

Case 1: Suppose n =31

By definition of congruence and divides, 3 | (n — 1) so n — 1 = 3k for some integer k. Rearranging, we get
n=3k+1. So, n?> = (3k +1)? = 9k% + 6k + 1 = 3(3k? + 2k) + 1. Subtracting 1 from both sides we get,
n? — 1 = 3(3k? + 2k). By definition of divides, 3 | (n? — 1). By definition of congruence, n? =3 1

Case 2: Suppose that n =3 2

By definition of congruence and divides, 3|(n — 2) so n — 2 = 3;j for some integer j. Rearranging, we get
n=3j+2. So,n?=(3j+2)2=952+12j+4 =92+12j +3+1 = 3(3j2 +4j + 1) + 1. Subtracting 1 from
both sides we get, n? — 1 = 3(352 4 45 + 1). By definition of divides, 3 | (n? — 1). By definition of congruence,
n? =; 1.

Since these cases are exhaustive, we have shown that, n? =3 1 holds in general. Since n was arbitrary, we have
shown that for all integers n, if n is not divisible by 3, then n? =3 1.

7. An Odd Proof

Write and English proof of the following claim: If n, m are odd integers, then 2n + m is odd.
Solution:

Let n,m be arbitrary odd integers. By definition of odd, n = 2k 4 1 for some integer k and m = 2j + 1 for
some integer j. Then

MmAm=202k+1)+2j +1=4k+2+2j+1=22k+j+1)+1

By definition, 2n + m is odd. Since n and m were arbitrary, we have shown that for all integers n, m, if n and
m are odd then 2n + 1 is odd.

8. A Rational Contradiction
Recall that a real number x is rational iff there exist integers p and ¢, with ¢ # 0, such that z = %.
Formally, for z € R, Rational(z) :=3p3¢ € Z (¢ A0 N z = g).

Write an English proof of the following statement:
For all real numbers a, b, if a is rational and ab is irrational, then b is irrational.
(a) Introduce any arbitrary variables you may need.

Solution:

Let a and b be arbitrary real numbers.

(b) Assume the premise of the implication.

Solution:

Suppose a is rational and ab is irrational.

(c) Unroll the definitions from your assumptions if necessary (use your judgment).



Solution:

By definition of rational, a = s/t for some integers s, t, where ¢t # 0.

We're going to use Reductio Ad Absurdum to prove that b is irrational (not rational). Write down the
assumption we must make in order to do that.

Solution:

Suppose that b is rational.

Finish the rest of the proof.

Solution:

By definition of rational, b = ¢/d for integers ¢, d with d # 0. Multiplying a and b, we get ab = (sc)/(td).
Since s, ¢, t,d are all integers, sc and td are both integers. Since t,d # 0, td # 0. By definition, then,
ab is rational, contradicting our earlier statement that ab is irrational (Note: In a formal proof, we would
cite Principium Contradictionis here). Therefore, b must be irrational (Note: In a formal proof, we would
cite Reductio Ad Absurdum here). Since a, b were arbitrary, we have proven the claim.



