

CSE 390z: Mathematics for Computation Workshop

Week 4 Workshop Solutions

Conceptual Review

- (a) How do we prove a "for all" implication in a formal proof?

E.g., $\forall x(Even(x) \rightarrow Odd(x + 1))$, Domain: integers

Solution:

Let a be an arbitrary integer

1.1.1 $Even(a)$ Assumption

...

1.1.n $Odd(a + 1)$

1.1 $Even(a) \rightarrow Odd(a + 1)$ Direct proof

1. $\forall x(Even(x) \rightarrow Odd(x + 1))$ Intro \forall

- (b) How do we prove a "for all" implication in an English proof?

E.g., The sum of any even integer and 1 is odd.

Solution:

Let a be an arbitrary integer.

Suppose a is even.

...

So [by definition], $a + 1$ is odd.

Since a was arbitrary, we have shown that the sum of every even integer and 1 is odd.

- (c) What's a good strategy for writing English proofs?

Solution:

- (1) Introduce an arbitrary variable for each \forall quantifier (if there are any).
- (2) If there is an implication, assume the left-hand side of the statement (assume the premise).
- (3) Unroll any definitions.
- (4) Manipulate towards the goal (using creativity, algebra, etc.).
- (5) Re-roll your definitions to derive the desired outcome.
- (6) Conclude by summarizing your claim.

- (d) What is the definition of "a divides b"?

Solution:

For $a, b \in \mathbb{Z}$ with $a \neq 0$:

$a \mid b := \exists k \in \mathbb{Z} (b = ka)$

- (e) What is the Division Theorem?

Solution:

For $a, b \in \mathbb{Z}$ with $b > 0$, there exist **unique** $q, r \in \mathbb{Z}$ with $0 \leq r < b$, such that $a = qb + r$.

- (f) What's the definition of "a is congruent to b mod m" ($a \equiv_m b$)?

Solution:

For $a, b \in \mathbb{Z}$ with $m > 0$

$$a \equiv_m b := m \mid (a - b)$$

1 Formal Proofs: More Quantifiers (from end of last week)

- (a) Given $\forall x(T(x) \rightarrow M(x))$ and $\exists xT(x)$, prove that $\exists xM(x)$.

Solution:

1. $\forall x(T(x) \rightarrow M(x))$ (Given)
2. $\exists xT(x)$ (Given)
3. $T(r)^*$ (Elim \exists ; 2)
4. $T(r) \rightarrow M(r)^{**}$ (Elim \forall ; 1)
5. $M(r)$ (Modus Ponens; 3, 4)
6. $\exists xM(x)$ (Intro \exists ; 5)

* r is the value that satisfies $T(x)$

** We can pick any value we want. We intentionally pick the r from step 3.

- (b) Given $\forall x(P(x) \rightarrow Q(x))$, prove that $(\exists xP(x)) \rightarrow (\exists yQ(y))$.

Solution:

1. $\forall x(P(x) \rightarrow Q(x))$ (Given)
- 2.1. $\exists xP(x)$ (Assumption)
- 2.2. $P(r)^*$ (Elim \exists ; 2.1)
- 2.3. $P(r) \rightarrow Q(r)^{**}$ (Elim \forall ; 1)
- 2.4. $Q(r)$ (Modus Ponens; 2.2, 2.3)
- 2.5. $\exists yQ(y)$ (Intro \exists ; 2.4)
2. $(\exists xP(x)) \rightarrow (\exists yQ(y))$ (Direct Proof Rule)

* r is the value that satisfies $P(x)$

** We can pick any value we want. We intentionally pick the r from step 2.2

2. English Proof

Let the predicates $\text{Odd}(x)$ and $\text{Even}(x)$ be defined as follows where the domain is the integers:

$$\text{Odd}(x) := \exists k (x = 2k + 1)$$

$$\text{Even}(x) := \exists k (x = 2k)$$

Write and **English proof** of the following claim:

$$\forall x \forall y [(\text{Even}(x) \wedge \text{Odd}(y)) \rightarrow \text{Odd}(x + y)]$$

- (a) Translate the claim to English.

Solution:

The sum of an even integer and an odd integer is odd.

- (b) Declare any arbitrary variables you may need.

Solution:

Let x and y be arbitrary integers.

- (c) Assume the left side of the implication.

Solution:

Suppose x is even and y is odd.

- (d) Unroll the definitions from your assumptions.

Solution:

Then by definition of even, there exists some integer k such that $x = 2k$, and by definition of odd, there exists some integer j such that $y = 2j + 1$.

Note: A common mistake here is to declare k and j as arbitrary. They're not arbitrary – they're the specific integers that satisfy the equations $x = 2k$ and $y = 2j + 1$.

- (e) Manipulate what you have towards your goal.

Solution:

Adding x and y , we see that: $x + y = (2k) + (2j + 1) = 2k + 2j + 1 = 2(k + j) + 1$.

- (f) Reroll definitions into the right side of the implication.

Solution:

By definition of odd, $x + y$ is odd.

- (g) Conclude that you have proved the claim.

Solution:

Since x and y were arbitrary, we conclude that for all integers x and y , if x is even and y is odd then $x + y$ is odd.

- (h) Now take these proof parts and assemble them into one cohesive English proof.

Solution:

Let x and y be arbitrary integers. Suppose x is even and y is odd. Then by definition of even, there exists some integer k such that $x = 2k$, and by definition of odd, there exists some integer j such that $y = 2j + 1$. Adding x and y we see that: $x + y = (2k) + (2j + 1) = 2k + 2j + 1 = 2(k + j) + 1$. By definition of odd, $x + y$ is odd. Since x and y were both arbitrary, we conclude that for all integers x and y , if x is even and y is odd, then $x + y$ is odd.

3. Divisibility Proof

Consider the following claim where the domain is the integers:

$$\forall n \forall d ((d \mid n) \rightarrow (-d \mid n))$$

- (a) Write a **formal proof** to show that the claim holds.

Solution:

Let a and b be arbitrary integers.

1.1.1	$b \mid a$	(Assumption)
1.1.2	$\exists k (a = kb)$	(Definition of divides: 1.1.1)
1.1.3	$a = jb$	(Elim \exists : 1.1.2)
1.1.4	$a = (-j)(-b)$	(Algebra: 1.1.3)
1.1.5	$\exists k (a = k(-b))$	(Intro \exists : 1.1.4)
1.1.6	$-b \mid a$	(Definition of divides: 1.1.5)
1.1	$(b \mid a) \rightarrow (-b \mid a)$	(Direct proof)
1.	$\forall n \forall d ((d \mid n) \rightarrow (-d \mid n))$	(Intro \forall)

- (b) Translate the claim into English.

Solution:

For integers n, d , if $d \mid n$, then $-d \mid n$.

- (c) Write an **English proof** to show that the claim holds.

Solution:

Let d, n be arbitrary integers, and suppose $d \mid n$. By definition of divides, there exists some integer k such that $n = kd = 1 \cdot kd$. Note that $-1 \cdot -1 = 1$. Substituting, we see $n = (-1)(-1)kd$. Rearranging, we have $n = (-k)(-d)$. Therefore, by definition of divides, $-d \mid n$. Since d and n were arbitrary, we have shown that for all integers d and n , if $d \mid n$, then $-d \mid n$.

4. Modular Computation

- (a) Circle the statements below that are true.

Recall for $a, b \in \mathbb{Z}$: $a \mid b := \exists k \in \mathbb{Z} (b = ka)$.

- (a) $1 \mid 3$
- (b) $3 \mid 1$
- (c) $2 \mid 2018$
- (d) $-2 \mid 12$
- (e) $1 \cdot 2 \cdot 3 \cdot 4 \mid 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$

Solution:

- (a) $1|3$ True: $3 = 1 \cdot 3$
- (b) $3|1$ False
- (c) $2|2018$ True: $2018 = 2 \cdot 1009$
- (d) $-2|12$ True: $12 = -2 \cdot -6$
- (e) $1 \cdot 2 \cdot 3 \cdot 4|1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$ True: $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 5 \cdot (1 \cdot 2 \cdot 3 \cdot 4)$

- (b) Circle the statements below that are true.

Recall for $a, b, m \in \mathbb{Z}$ and $m > 0$: $a \equiv_m b := m|(a - b)$.

- (a) $-3 \equiv_3 3$
- (b) $0 \equiv_9 9000$
- (c) $44 \equiv_7 13$
- (d) $-58 \equiv_5 707$
- (e) $58 \equiv_5 707$

Solution:

- (a) $-3 \equiv_3 3$ True: $-3 - 3 = -6, 3|-6$
- (b) $0 \equiv_9 9000$ True: $0 - 9000 = -9000, 9|-9000$
- (c) $44 \equiv_7 13$ False: $44 - 13 = 31, 31 = 7 \cdot 4 + 3 \therefore 7 \nmid 31$
- (d) $-58 \equiv_5 707$ True: $-58 - 707 = -765, 5|-765$
- (e) $58 \equiv_5 707$ False: $58 - 707 = -649, 5 \nmid -649$

5. Modular Multiplication

Write an **English proof** of the following claim: For all integers a, b, c, d, m with $m > 0$, if $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Solution:

Let $m > 0, a, b, c, d$ be arbitrary integers. Suppose that $a \equiv_m b$ and $c \equiv_m d$. Then by definition of congruence, $m | (a - b)$ and $m | (c - d)$. Then by definition of divides, there exists some integer k such that $a - b = km$, and there exists some integer j such that $c - d = jm$. Then $a = b + km$ and $c = d + jm$. Multiplying gives us:

$$ac = (b + km)(d + jm) = bd + kmd + bjm + kjm^2 = bd + m(kd + bj + kjm)$$

Subtracting bd from both sides we get, $ac - bd = m(kd + bj + kjm)$. By definition of divides, $m | ac - bd$. Then by definition of congruence, $ac \equiv_m bd$. Since $m > 0, a, b, c, d$ were arbitrary integers, the claim holds for all integers a, b, c, d and positive integers m .

6. Mod Practice

Write an **English proof** of the following claim: For all integers n , if n is not divisible by 3, then $n^2 \equiv_3 1$. You may use, without proof, that for any integers a, m with $m > 0$, $m | a$ iff $a \equiv_m 0$.

Solution:

Let n be an arbitrary integer.

Suppose that n is not divisible by 3.

Since $3 \mid n$ iff $n \equiv_3 0$ and $3 \nmid n$, we know that $n \not\equiv_3 0$. The only options remaining are $n \equiv_3 1$ or $n \equiv_3 2$. We continue by cases.

Case 1: Suppose $n \equiv_3 1$

By definition of congruence and divides, $3 \mid (n - 1)$ so $n - 1 = 3k$ for some integer k . Rearranging, we get $n = 3k + 1$. So, $n^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$. Subtracting 1 from both sides we get, $n^2 - 1 = 3(3k^2 + 2k)$. By definition of divides, $3 \mid (n^2 - 1)$. By definition of congruence, $n^2 \equiv_3 1$

Case 2: Suppose that $n \equiv_3 2$

By definition of congruence and divides, $3 \mid (n - 2)$ so $n - 2 = 3j$ for some integer j . Rearranging, we get $n = 3j + 2$. So, $n^2 = (3j + 2)^2 = 9j^2 + 12j + 4 = 9j^2 + 12j + 3 + 1 = 3(3j^2 + 4j + 1) + 1$. Subtracting 1 from both sides we get, $n^2 - 1 = 3(3j^2 + 4j + 1)$. By definition of divides, $3 \mid (n^2 - 1)$. By definition of congruence, $n^2 \equiv_3 1$.

Since these cases are exhaustive, we have shown that, $n^2 \equiv_3 1$ holds in general. Since n was arbitrary, we have shown that for all integers n , if n is not divisible by 3, then $n^2 \equiv_3 1$.

7. An Odd Proof

Write and **English proof** of the following claim: If n, m are odd integers, then $2n + m$ is odd.

Solution:

Let n, m be arbitrary odd integers. By definition of odd, $n = 2k + 1$ for some integer k and $m = 2j + 1$ for some integer j . Then

$$2n + m = 2(2k + 1) + 2j + 1 = 4k + 2 + 2j + 1 = 2(2k + j + 1) + 1$$

By definition, $2n + m$ is odd. Since n and m were arbitrary, we have shown that for all integers n, m , if n and m are odd then $2n + m$ is odd.

8. A Rational Contradiction

Recall that a real number x is **rational** iff there exist integers p and q , with $q \neq 0$, such that $x = \frac{p}{q}$. Formally, for $x \in \mathbb{R}$, $\text{Rational}(x) := \exists p \exists q \in \mathbb{Z} (q \neq 0 \wedge x = \frac{p}{q})$.

Write an **English proof** of the following statement:

For all real numbers a, b , if a is rational and ab is irrational, then b is irrational.

- (a) Introduce any arbitrary variables you may need.

Solution:

Let a and b be arbitrary real numbers.

- (b) Assume the premise of the implication.

Solution:

Suppose a is rational and ab is irrational.

- (c) Unroll the definitions from your assumptions if necessary (use your judgment).

Solution:

By definition of rational, $a = s/t$ for some integers s, t , where $t \neq 0$.

- (d) We're going to use Reductio Ad Absurdum to prove that b is irrational (not rational). Write down the assumption we must make in order to do that.

Solution:

Suppose that b is rational.

- (e) Finish the rest of the proof.

Solution:

By definition of rational, $b = c/d$ for integers c, d with $d \neq 0$. Multiplying a and b , we get $ab = (sc)/(td)$. Since s, c, t, d are all integers, sc and td are both integers. Since $t, d \neq 0$, $td \neq 0$. By definition, then, ab is rational, contradicting our earlier statement that ab is irrational (Note: In a formal proof, we would cite Principium Contradictionis here). Therefore, b must be irrational (Note: In a formal proof, we would cite Reductio Ad Absurdum here). Since a, b were arbitrary, we have proven the claim.