
CSE 390z: Mathematics for Computation Workshop
Week 4 Workshop Solutions

Conceptual Review
(a) How do we prove a "for all" implication in a formal proof?

E.g., ∀x(Even(x) → Odd(x+ 1)), Domain: integers

Solution:
Let a be an arbitrary integer

1.1.1 Even(a) Assumption
...

1.1.n Odd(a+ 1)

1.1 Even(a) → Odd(a+ 1) Direct proof
1. ∀x(Even(x) → Odd(x+ 1)) Intro ∀

(b) How do we prove a "for all" implication in an English proof?
E.g., The sum of any even integer and 1 is odd.

Solution:
Let a be an arbitrary integer.
Suppose a is even.
...
So [by definition], a+ 1 is odd.
Since a was arbitrary, we have shown that the sum of every even integer and 1 is odd.

(c) What’s a good strategy for writing English proofs?

Solution:
(1) Introduce an arbitrary variable for each ∀ quantifier (if there are any).
(2) If there is an implication, assume the left-hand side of the statement (assume the premise).
(3) Unroll any definitions.
(4) Manipulate towards the goal (using creativity, algebra, etc.).
(5) Re-roll your definitions to derive the desired outcome.
(6) Conclude by summarizing your claim.

(d) What is the definition of "a divides b"?

Solution:
For a, b ∈ Z with a 6= 0:
a | b := ∃k ∈ Z (b = ka)

(e) What is the Division Theorem?
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Solution:
For a, b ∈ Z with b > 0, there exist unique q, r ∈ Z with 0 ≤ r < b, such that a = qb+ r.

(f) What’s the definition of "a is congruent to b mod m" (a ≡m b)?

Solution:
For a, b ∈ Z with m > 0
a ≡m b := m | (a− b)

1 Formal Proofs: More Quantifiers (from end of last week)
(a) Given ∀x(T (x) → M(x)) and ∃xT (x), prove that ∃xM(x).

Solution:
1. ∀x(T (x) → M(x)) (Given)
2. ∃xT (x) (Given)
3. T (r)* (Elim ∃; 2)
4. T (r) → M(r)** (Elim ∀; 1)
5. M(r) (Modus Ponens; 3, 4)
6. ∃xM(x) (Intro ∃; 5)

* r is the value that satisfies T (x)
** We can pick any value we want. We intentionally pick the r from step 3.

(b) Given ∀x(P (x) → Q(x)), prove that (∃xP (x)) → (∃yQ(y)).

Solution:
1. ∀x(P (x) → Q(x)) (Given)

2.1. ∃xP (x) (Assumption)
2.2. P (r)* (Elim ∃; 2.1)
2.3. P (r) → Q(r)** (Elim ∀; 1)
2.4. Q(r) (Modus Ponens; 2.2, 2.3)
2.5. ∃yQ(y) (Intro ∃; 2.4)

2. (∃xP (x)) → (∃yQ(y)) (Direct Proof Rule)

* r is the value that satisfies P (x)
** We can pick any value we want. We intentionally pick the r from step 2.2
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2. English Proof
Let the predicates Odd(x) and Even(x) be defined as follows where the domain is the integers:

Odd(x) := ∃k (x = 2k + 1)

Even(x) := ∃k (x = 2k)

Write and English proof of the following claim:

∀x∀y[(Even(x) ∧Odd(y)) → Odd(x+ y)]

(a) Translate the claim to English.

Solution:
The sum of an even integer and an odd integer is odd.

(b) Declare any arbitrary variables you may need.

Solution:
Let x and y be arbitrary integers.

(c) Assume the left side of the implication.

Solution:
Suppose x is even and y is odd.

(d) Unroll the definitions from your assumptions.

Solution:
Then by definition of even, there exists some integer k such that x = 2k, and by definition of odd, there
exists some integer j such that y = 2j + 1.

Note: A common mistake here is to declare k and j as arbitrary. They’re not arbitrary – they’re the
specific integers that satisfy the equations x = 2k and y = 2j + 1.

(e) Manipulate what you have towards your goal.

Solution:
Adding x and y, we see that: x+ y = (2k) + (2j + 1) = 2k + 2j + 1 = 2(k + j) + 1.

(f) Reroll definitions into the right side of the implication.

Solution:
By definition of odd, x+ y is odd.

(g) Conclude that you have proved the claim.

Solution:
Since x and y were arbitrary, we conclude that for all integers x and y, if x is even and y is odd then
x+ y is odd.

(h) Now take these proof parts and assemble them into one cohesive English proof.
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Solution:
Let x and y be arbitrary integers. Suppose x is even and y is odd. Then by definition of even, there
exists some integer k such that x = 2k, and by definition of odd, there exists some integer j such that
y = 2j + 1. Adding x and y we see that: x + y = (2k) + (2j + 1) = 2k + 2j + 1 = 2(k + j) + 1. By
definition of odd, x+ y is odd. Since x and y were both arbitrary, we conclude that for all integers x and
y, if x is even and y is odd, then x+ y is odd.

3. Divisibility Proof
Consider the following claim where the domain is the integers:

∀n∀d ((d | n) → (−d | n))

(a) Write a formal proof to show that the claim holds.

Solution:
Let a and b be arbitrary integers.

1.1.1 b | a (Assumption)
1.1.2 ∃k (a = kb) (Definition of divides: 1.1.1)
1.1.3 a = jb (Elim ∃: 1.1.2)
1.1.4 a = (−j)(−b) (Algebra: 1.1.3)
1.1.5 ∃k (a = k(−b)) (Intro ∃: 1.1.4)
1.1.6 −b | a (Definition of divides: 1.1.5)

1.1 (b | a) → (−b | a) (Direct proof)
1. ∀n∀d ((d | n) → (−d | n)) (Intro ∀)

(b) Translate the claim into English.

Solution:
For integers n, d, if d | n, then −d | n.

(c) Write an English proof to show that the claim holds.

Solution:
Let d, n be arbitrary integers, and suppose d|n. By definition of divides, there exists some integer k such
that n = kd = 1 · kd. Note that −1 · −1 = 1. Substituting, we see n = (−1)(−1)kd. Rearranging, we
have n = (−k)(−d). Therefore, by definition of divides, −d|n. Since d and n were arbitrary, we have
shown that for all integers d and n, if d|n, then −d|n.

4. Modular Computation
(a) Circle the statements below that are true.

Recall for a, b ∈ Z: a|b := ∃k ∈ Z (b = ka).

(a) 1|3
(b) 3|1
(c) 2|2018
(d) −2|12
(e) 1 · 2 · 3 · 4|1 · 2 · 3 · 4 · 5
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Solution:
(a) 1|3 True: 3 = 1 · 3
(b) 3|1 False
(c) 2|2018 True: 2018 = 2 · 1009
(d) −2|12 True: 12 = −2 · −6

(e) 1 · 2 · 3 · 4|1 · 2 · 3 · 4 · 5 True: 1 · 2 · 3 · 4 · 5 = 5 · (1 · 2 · 3 · 4)

(b) Circle the statements below that are true.
Recall for a, b,m ∈ Z and m > 0: a ≡m b := m|(a− b).

(a) −3 ≡3 3

(b) 0 ≡9 9000

(c) 44 ≡7 13

(d) −58 ≡5 707

(e) 58 ≡5 707

Solution:
(a) −3 ≡3 3 True: −3− 3 = −6, 3| − 6

(b) 0 ≡9 9000 True: 0− 9000 = −9000, 9| − 9000

(c) 44 ≡7 13 False: 44− 13 = 31 31 = 7 · 4 + 3 ∴ 7 - 31
(d) −58 ≡5 707 True: −58− 707 = −765 5| − 765

(e) 58 ≡5 707 False: 58− 707 = −649 5 - −649

5. Modular Multiplication
Write an English proof of the following claim: For all integers a, b, c, d,m with m > 0, if a ≡m b and c ≡m d,
then ac ≡m bd.

Solution:
Let m > 0, a, b, c, d be arbitrary integers. Suppose that a ≡m b and c ≡m d. Then by definition of congruence,
m | (a− b) and m | (c− d). Then by definition of divides, there exists some integer k such that a− b = km,
and there exists some integer j such that c− d = jm. Then a = b+ km and c = d+ jm. Multiplying gives us:

ac = (b+ km)(d+ jm) = bd+ kmd+ bjm+ kjm2 = bd+m(kd+ bj + kjm)

Subtracting bd from both sides we get, ac − bd = m(kd + bj + kjm). By definition of divides, m | ac − bd.
Then by definition of congruence, ac ≡m bd. Since m > 0, a, b, c, d were arbitrary integers, the claim holds for
all integers a, b, c, d and positive integers m.

6. Mod Practice
Write an English proof of the following claim: For all integers n, if n is not divisible by 3, then n2 ≡3 1.
You may use, without proof, that for any integers a,m with m > 0, m | a iff a ≡m 0.

Solution:
Let n be an arbitrary integer.
Suppose that n is not divisible by 3.
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Since 3 | n iff n ≡3 0 and 3 - n, we know that n 6≡3 0. The only options remaining are n ≡3 1 or n ≡3 2.
We continue by cases.

Case 1: Suppose n ≡3 1
By definition of congruence and divides, 3 | (n − 1) so n − 1 = 3k for some integer k. Rearranging, we get
n = 3k + 1. So, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1. Subtracting 1 from both sides we get,
n2 − 1 = 3(3k2 + 2k). By definition of divides, 3 | (n2 − 1). By definition of congruence, n2 ≡3 1

Case 2: Suppose that n ≡3 2
By definition of congruence and divides, 3|(n − 2) so n − 2 = 3j for some integer j. Rearranging, we get
n = 3j+2. So, n2 = (3j+2)2 = 9j2+12j+4 = 9j2+12j+3+1 = 3(3j2+4j+1)+1. Subtracting 1 from
both sides we get, n2 − 1 = 3(3j2 +4j+1). By definition of divides, 3 | (n2 − 1). By definition of congruence,
n2 ≡3 1.

Since these cases are exhaustive, we have shown that, n2 ≡3 1 holds in general. Since n was arbitrary, we have
shown that for all integers n, if n is not divisible by 3, then n2 ≡3 1.

7. An Odd Proof
Write and English proof of the following claim: If n,m are odd integers, then 2n+m is odd.
Solution:
Let n,m be arbitrary odd integers. By definition of odd, n = 2k + 1 for some integer k and m = 2j + 1 for
some integer j. Then

2n+m = 2(2k + 1) + 2j + 1 = 4k + 2 + 2j + 1 = 2(2k + j + 1) + 1

By definition, 2n+m is odd. Since n and m were arbitrary, we have shown that for all integers n, m, if n and
m are odd then 2n+ 1 is odd.

8. A Rational Contradiction
Recall that a real number x is rational iff there exist integers p and q, with q 6= 0, such that x = p

q .
Formally, for x ∈ R, Rational(x) := ∃p∃q ∈ Z (q 6= 0 ∧ x = p

q ).

Write an English proof of the following statement:

For all real numbers a, b, if a is rational and ab is irrational, then b is irrational.

(a) Introduce any arbitrary variables you may need.

Solution:
Let a and b be arbitrary real numbers.

(b) Assume the premise of the implication.

Solution:
Suppose a is rational and ab is irrational.

(c) Unroll the definitions from your assumptions if necessary (use your judgment).
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Solution:
By definition of rational, a = s/t for some integers s, t, where t 6= 0.

(d) We’re going to use Reductio Ad Absurdum to prove that b is irrational (not rational). Write down the
assumption we must make in order to do that.

Solution:
Suppose that b is rational.

(e) Finish the rest of the proof.

Solution:
By definition of rational, b = c/d for integers c, d with d 6= 0. Multiplying a and b, we get ab = (sc)/(td).
Since s, c, t, d are all integers, sc and td are both integers. Since t, d 6= 0, td 6= 0. By definition, then,
ab is rational, contradicting our earlier statement that ab is irrational (Note: In a formal proof, we would
cite Principium Contradictionis here). Therefore, b must be irrational (Note: In a formal proof, we would
cite Reductio Ad Absurdum here). Since a, b were arbitrary, we have proven the claim.
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