
CSE 390Z: Mathematics for Computation Workshop
Week 7 Workshop

0. Conceptual Review
(a) Regular expression rules:

Basis: ε, a for a ∈ Σ
Recursive: If A,B are regular expressions, (A ∪B), AB, and A∗ are regular expressions.

1. Structural Induction: CharTrees
Recursive Definition of CharTrees:

• Basis Step: Null is a CharTree

• Recursive Step: If L,R are CharTrees and c ∈ Σ, then CharTree(L, c,R) is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

• The preorder function returns the preorder traversal of all elements in a CharTree.

preorder(Null) = ε

preorder(CharTree(L, c,R)) = c · preorder(L) · preorder(R)

• The postorder function returns the postorder traversal of all elements in a CharTree.

postorder(Null) = ε

postorder(CharTree(L, c,R)) = postorder(L) · postorder(R) · c

• The mirror function produces the mirror image of a CharTree.

mirror(Null) = Null

mirror(CharTree(L, c,R)) = CharTree(mirror(R), c,mirror(L))

• Finally, for all strings x, the “reversal” of x, denoted xR, produces the string in reverse order.

Additional Facts:
You may use the following facts:

• Fact 1: For any strings x1, ..., xk: (x1 · ... · xk)R = xRk · ... · xR1

• Fact 2: For any character c, cR = c

It turns out that for any CharTree T , the reversal of the preorder traversal of T is the same as the postorder
traversal of the mirror of T .

1



Example for Intuition:

Let T be the tree above.
T is built as follows: the two leaf nodes are
C = (Null, c, Null) and D = (Null, d, Null)
The tree rooted at b is B = (C, b,D)
Finally, T is T = (Null, a, B)
preorder(T ) =“abcd”.

This tree is mirror(T ).
postorder(mirror(T )) =“dcba”,
“dcba” is the reversal of “abcd” so
[preorder(T )]R = postorder(mirror(T )) holds for T

Use structural induction to prove the following claim:

For every CharTree, T : [preorder(T )]R = postorder(mirror(T ))

2



2. More Induction...Literally
Define a set S as follows: Define a set T as follows:
Basis: 6 ∈ S; 15 ∈ S Basis: 6 ∈ T ; 15 ∈ T
Recursive: if x, y ∈ S then x+ y ∈ S Recursive: if x ∈ T then x+6 ∈ T and x+15 ∈ T

In lecture you proved that every element of T is an element of S.
Now we’re going to prove that every element of S is an element of T .

(a) First, use structural induction to prove the following lemma:
The sum of any two elements in T is also in T . Formally this is: ∀a, b ∈ T (a+ b ∈ T )

(b) Now, use structural induction to prove the main claim: Every element of S is also in T .
You can use the Lemma from part (a) by citing "part (a) lemma".

3



3. Regular Expressions Warmup
(a) Consider the following Regular Expression (RegEx):

1(45 ∪ 54)?1

List 5 strings that are accepted by the RegEx and 5 strings that are rejected. The strings should be over
the alphabet Σ := {1, 4, 5}. After listing the strings, summarize the RegEx in your own words.

(b) Consider the following Regular Expression (RegEx):

a(aaa)∗(bb)∗

List 5 strings that are accepted by the RegEx and 5 strings that are rejected. The strings should be over
the alphabet Σ := {a, b}. After listing the strings, summarize the RegEx in your own words.

4



4. Constructing RegExs
For each of the following, construct a regular expression for the specified language.

(a) Strings over the alphabet Σ := {a, b} with odd length.

(b) Strings over the alphabet Σ := {a} with an even number of a’s.

(c) Strings over the alphabet Σ := {a, b} with an even number of a’s.

(d) Strings over the alphabet Σ := {a, b} with alternating a’s and b’s (i.e., not containing aa or bb).

(e) Strings over the alphabet Σ := {a, b} where the second to last character is a b.

(f) Strings over the alphabet Σ := {a, b} not ending in aa.

(g) Strings over the alphabet Σ := {a, b} with an even number of a’s or an odd number of b’s.

5


