

0. Conceptual Review

- (a) Regular expression rules:

Basis: ϵ, a for $a \in \Sigma$

Recursive: If A, B are regular expressions, $(A \cup B), AB$, and A^* are regular expressions.

1. Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a **CharTree**
- Recursive Step: If L, R are **CharTrees** and $c \in \Sigma$, then $\text{CharTree}(L, c, R)$ is also a **CharTree**

Intuitively, a **CharTree** is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

- The preorder function returns the preorder traversal of all elements in a **CharTree**.

$$\begin{aligned} \text{preorder}(\text{Null}) &= \epsilon \\ \text{preorder}(\text{CharTree}(L, c, R)) &= c \cdot \text{preorder}(L) \cdot \text{preorder}(R) \end{aligned}$$

- The postorder function returns the postorder traversal of all elements in a **CharTree**.

$$\begin{aligned} \text{postorder}(\text{Null}) &= \epsilon \\ \text{postorder}(\text{CharTree}(L, c, R)) &= \text{postorder}(L) \cdot \text{postorder}(R) \cdot c \end{aligned}$$

- The mirror function produces the mirror image of a **CharTree**.

$$\begin{aligned} \text{mirror}(\text{Null}) &= \text{Null} \\ \text{mirror}(\text{CharTree}(L, c, R)) &= \text{CharTree}(\text{mirror}(R), c, \text{mirror}(L)) \end{aligned}$$

- Finally, for all strings x , the “reversal” of x , denoted x^R , produces the string in reverse order.

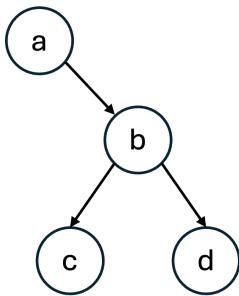
Additional Facts:

You may use the following facts:

- **Fact 1:** For any strings x_1, \dots, x_k : $(x_1 \cdot \dots \cdot x_k)^R = x_k^R \cdot \dots \cdot x_1^R$
- **Fact 2:** For any character c , $c^R = c$

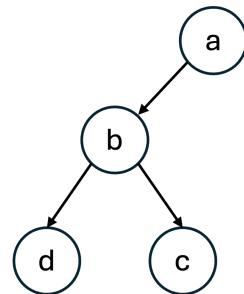
It turns out that for any CharTree T , the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T .

Example for Intuition:



Let T be the tree above.

T is built as follows: the two leaf nodes are
 $C = (\text{Null}, c, \text{Null})$ and $D = (\text{Null}, d, \text{Null})$
The tree rooted at b is $B = (C, b, D)$
Finally, T is $T = (\text{Null}, a, B)$
 $\text{preorder}(T) = "abcd"$.



This tree is $\text{mirror}(T)$.
 $\text{postorder}(\text{mirror}(T)) = "dcba"$,
“dcba” is the reversal of “abcd” so
 $[\text{preorder}(T)]^R = \text{postorder}(\text{mirror}(T))$ holds for T

Use structural induction to prove the following claim:

For every **CharTree**, T : $[\text{preorder}(T)]^R = \text{postorder}(\text{mirror}(T))$

2. More Induction...Literally

Define a set S as follows:

Basis: $6 \in S$; $15 \in S$

Recursive: if $x, y \in S$ then $x + y \in S$

Define a set T as follows:

Basis: $6 \in T$; $15 \in T$

Recursive: if $x \in T$ then $x+6 \in T$ and $x+15 \in T$

In lecture you proved that every element of T is an element of S .

Now we're going to prove that every element of S is an element of T .

(a) First, use structural induction to prove the following lemma:

The sum of any two elements in T is also in T . Formally this is: $\forall a, b \in T (a + b \in T)$

(b) Now, use structural induction to prove the main claim: Every element of S is also in T .

You can use the Lemma from part (a) by citing "part (a) lemma".

3. Regular Expressions Warmup

(a) Consider the following Regular Expression (RegEx):

$$1(45 \cup 54)^*1$$

List 5 strings that are accepted by the RegEx and 5 strings that are rejected. The strings should be over the alphabet $\Sigma := \{1, 4, 5\}$. After listing the strings, summarize the RegEx in your own words.

(b) Consider the following Regular Expression (RegEx):

$$a(aaa)^*(bb)^*$$

List 5 strings that are accepted by the RegEx and 5 strings that are rejected. The strings should be over the alphabet $\Sigma := \{a, b\}$. After listing the strings, summarize the RegEx in your own words.

4. Constructing RegExs

For each of the following, construct a regular expression for the specified language.

- (a) Strings over the alphabet $\Sigma := \{a, b\}$ with odd length.

- (b) Strings over the alphabet $\Sigma := \{a\}$ with an even number of a 's.

- (c) Strings over the alphabet $\Sigma := \{a, b\}$ with an even number of a 's.

- (d) Strings over the alphabet $\Sigma := \{a, b\}$ with alternating a 's and b 's (i.e., not containing aa or bb).

- (e) Strings over the alphabet $\Sigma := \{a, b\}$ where the second to last character is a b .

- (f) Strings over the alphabet $\Sigma := \{a, b\}$ not ending in aa .

- (g) Strings over the alphabet $\Sigma := \{a, b\}$ with an even number of a 's or an odd number of b 's.