

CSE 390Z: Mathematics for Computation Workshop

Week 6 Workshop

Conceptual Review

(a) Set Operations and Comparisons

Set Equality: $A = B := \forall x(x \in A \leftrightarrow x \in B)$

Subset: $A \subseteq B := \forall x(x \in A \rightarrow x \in B)$

Union: $A \cup B := \{x : x \in A \vee x \in B\}$

Intersection: $A \cap B := \{x : x \in A \wedge x \in B\}$

Set Difference: $A \setminus B = A - B := \{x : x \in A \wedge x \notin B\}$

Set Complement: $\overline{A} = A^C := \{x : x \notin A\}$

Powerset: $\mathcal{P}(A) := \{B : B \subseteq A\}$

Cartesian Product: $A \times B := \{(a, b) : a \in A, b \in B\}$

(b) Set Builder Notation

Filter: $S := \{x \in U : P(x)\}$

Translation: S is all the things in U that satisfy $P(x)$.

Map: $T := \{f(x) : x \in U\}$

Translation: T is all output values from the function $f(x)$ when the input is something from U .

The $:$ is read as "such that". It is also common to use $|$ instead of $:$. When using set builder notation, the stuff before the $:$ (or $|$) is the stuff in the set. The stuff after the $:$ (or $|$) are requirements that stuff must fulfill to be in the set.

(c) How do we prove that for sets A and B , $A \subseteq B$?

(d) What are two ways we can prove that for sets A and B , $A = B$?

1. A Basic Subset Proof

Let A, B be sets. Consider the following claim:

$$A \cap B \subseteq A \cup B$$

(a) Write a **formal proof** that the claim holds. Use cozy-style rules for applying definitions. For example, You can replace $A \subseteq B$ by $\forall x(x \in A \rightarrow x \in B)$ with "Def of Subset" and the reverse with "Undef Subset".

(b) Translate your formal proof to an **English proof**. You may be surprised by how short your proof is!

2. Set Equality Proof

(a) Write an English proof to show that $A \cap (A \cup B) \subseteq A$ for sets A, B .

(b) Write an English proof to show that $A \subseteq A \cap (A \cup B)$ for sets A, B .

- (c) Combine part (a) and (b) to conclude that $A \cap (A \cup B) = A$ for sets A, B .
- (d) Re-write this proof using the Meta-Theorem template from lecture (i.e., using a chain of equivalences instead of two subset proofs).

3. Subsets

Let A, B, C be sets. Consider the following claim:

$$A \subseteq C \text{ follows from } A \subseteq B \text{ and } B \subseteq C$$

- (a) Write a **formal proof** that the claim holds:

- (b) Translate the formal proof to an **English Proof**.

4. Moderately Unsettling

Let A, B and C be the following sets:

$$\begin{aligned}A &:= \{x \in \mathbb{Z} : x \equiv_4 0\} \\B &:= \{x \in \mathbb{Z} : x \equiv_4 2\} \\C &:= \{x \in \mathbb{Z} : x \equiv_2 0\}\end{aligned}$$

Consider the following claim:

$$C = (A \cup B)$$

(a) Write an English proof to show that $C \subseteq (A \cup B)$

(b) Write an English proof to show that $(A \cup B) \subseteq C$

(c) Combine part(a) and part(b) to show that $C = (A \cup B)$

5. $\cup \rightarrow \cap?$

Prove or disprove: for all sets A and B , $A \cup B \subseteq A \cap B$.

Recall that we can disprove a for all claim by finding a counter-example.

6. Powerful Ideas

Let A and B be sets. Consider the following claim:

$$\text{If } A \subseteq B \text{ then } \mathcal{P}(A) \subseteq \mathcal{P}(B)$$

Write an **English proof** that the claim holds.

7. Cartesian Product Proof

Let A, B, C, D be sets. Write an **English proof** of the follow claim:

$$A \times C \subseteq (A \cup B) \times (C \cup D)$$

8. Set Equality Proof II

Let A, B, C be sets. Consider the following claim

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

(a) Write a **formal proof** that the claim holds.

(b) Translate your proof to an **English Proof**.

Follow the Meta-Theorem template from lecture (i.e., using a chain of equivalences instead of two subset proofs).

(c) Optional: Re-write this proof as an **English Proof** that is made up of two subset proofs.

9. Structural Induction: Divisible by 4

Define a set T of numbers by:

- 4 and 12 are in T
- If $x \in T$ and $y \in T$, then $x + y \in T$ and $x - y \in T$

Prove by structural induction that every number in T is divisible by 4.

10. More Induction...Literally

Define a set S as follows:

Basis: $6 \in S$; $15 \in S$

Recursive: if $x, y \in S$ then $x + y \in S$

Define a set T as follows:

Basis: $6 \in T$; $15 \in T$

Recursive: if $x \in T$ then $x+6 \in T$ and $x+15 \in T$

In lecture you proved that every element of T is an element of S .

Now we're going to prove that every element of S is an element of T .

(a) First, use structural induction to prove the following lemma:

The sum of any two elements in T is also in T . Formally this is: $\forall a, b \in T (a + b \in T)$

(b) Now, use structural induction to prove the main claim: Every element of S is also in T .

You can use the Lemma from part (a) by citing "part (a) lemma".

11. We'll do this next week, but you can try it after Wednesday's lecture.

Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a **CharTree**
- Recursive Step: If L, R are **CharTrees** and $c \in \Sigma$, then $\text{CharTree}(L, c, R)$ is also a **CharTree**

Intuitively, a **CharTree** is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

- The preorder function returns the preorder traversal of all elements in a **CharTree**.

$$\begin{aligned}\text{preorder}(\text{Null}) &= \varepsilon \\ \text{preorder}(\text{CharTree}(L, c, R)) &= c \cdot \text{preorder}(L) \cdot \text{preorder}(R)\end{aligned}$$

- The postorder function returns the postorder traversal of all elements in a **CharTree**.

$$\begin{aligned}\text{postorder}(\text{Null}) &= \varepsilon \\ \text{postorder}(\text{CharTree}(L, c, R)) &= \text{postorder}(L) \cdot \text{postorder}(R) \cdot c\end{aligned}$$

- The mirror function produces the mirror image of a **CharTree**.

$$\begin{aligned}\text{mirror}(\text{Null}) &= \text{Null} \\ \text{mirror}(\text{CharTree}(L, c, R)) &= \text{CharTree}(\text{mirror}(R), c, \text{mirror}(L))\end{aligned}$$

- Finally, for all strings x, x^R , the “reversal” of x , produces the string in reverse order.

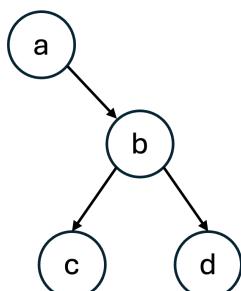
Additional Facts:

You may use the following facts:

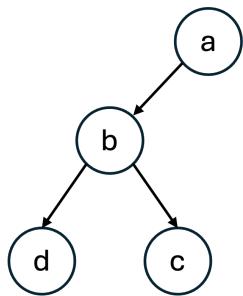
- **Fact 1:** For any strings x_1, \dots, x_k : $(x_1 \cdot \dots \cdot x_k)^R = x_k^R \cdot \dots \cdot x_1^R$
- **Fact 2:** For any character c , $c^R = c$

It turns out that for any CharTree T , the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T .

Example for Intuition:



Let T be the tree above.
 $\text{preorder}(T) = \text{"abcd"}$.
 T is built as (Null, a, U)
Where U is (V, b, W) ,
 $V = (\text{Null}, c, \text{Null})$, $W = (\text{Null}, d, \text{Null})$.



This tree is $\text{mirror}(T)$.
 $\text{postorder}(\text{mirror}(T)) = \text{"dcba"}$,
 "dcba" is the reversal of "abcd" so
 $[\text{preorder}(T)]^R = \text{postorder}(\text{mirror}(T))$ holds for T

Use structural induction to prove the following claim:

For every **CharTree**, T : $[\text{preorder}(T)]^R = \text{postorder}(\text{mirror}(T))$