

CSE 390z: Mathematics for Computation Workshop

Week 4 Workshop

Conceptual Review

(a) How do we prove a "for all" implication in a formal proof?

E.g., $\forall x(Even(x) \rightarrow Odd(x + 1))$, Domain: integers

(b) How do we prove a "for all" implication in an English proof?

E.g., The sum of any even integer and 1 is odd.

(c) What's a good strategy for writing English proofs?

(d) What is the definition of "a divides b"?

(e) What is the Division Theorem?

(f) What's the definition of "a is congruent to b mod m" ($a \equiv_m b$)?

1 Formal Proofs: More Quantifiers (from end of last week)

(a) Given $\forall x(T(x) \rightarrow M(x))$ and $\exists xT(x)$, prove that $\exists xM(x)$.

(b) Given $\forall x(P(x) \rightarrow Q(x))$, prove that $(\exists xP(x)) \rightarrow (\exists yQ(y))$.

2. English Proof

Let the predicates $\text{Odd}(x)$ and $\text{Even}(x)$ be defined as follows where the domain is the integers:

$$\text{Odd}(x) := \exists k (x = 2k + 1)$$

$$\text{Even}(x) := \exists k (x = 2k)$$

Write and **English proof** of the following claim:

$$\forall x \forall y [(\text{Even}(x) \wedge \text{Odd}(y)) \rightarrow \text{Odd}(x + y)]$$

- (a) Translate the claim to English.
- (b) Declare any arbitrary variables you may need.
- (c) Assume the left side of the implication.
- (d) Unroll the definitions from your assumptions.
- (e) Manipulate what you have towards your goal.
- (f) Reroll definitions into the right side of the implication.
- (g) Conclude that you have proved the claim.
- (h) Now take these proof parts and assemble them into one cohesive English proof.

3. Divisibility Proof

Consider the following claim where the domain is the integers:

$$\forall n \forall d ((d \mid n) \rightarrow (-d \mid n))$$

(a) Write a **formal proof** to show that the claim holds.

(b) Translate the claim into English.

(c) Write an **English proof** to show that the claim holds.

4. Modular Computation

(a) Circle the statements below that are true.

Recall for $a, b \in \mathbb{Z}$: $a|b := \exists k \in \mathbb{Z} (b = ka)$.

- (a) $1|3$
- (b) $3|1$
- (c) $2|2018$
- (d) $-2|12$
- (e) $1 \cdot 2 \cdot 3 \cdot 4|1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$

(b) Circle the statements below that are true.

Recall for $a, b, m \in \mathbb{Z}$ and $m > 0$: $a \equiv_m b := m|(a - b)$.

- (a) $-3 \equiv_3 3$
- (b) $0 \equiv_9 9000$
- (c) $44 \equiv_7 13$
- (d) $-58 \equiv_5 707$
- (e) $58 \equiv_5 707$

5. Modular Multiplication

Write an **English proof** of the following claim: For all integers a, b, c, d, m with $m > 0$, if $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

6. Mod Practice

Write an **English proof** of the following claim: For all integers n , if n is not divisible by 3, then $n^2 \equiv_3 1$. You may use, without proof, that for any integers a, m with $m > 0$, $m \mid a$ iff $a \equiv_m 0$.

7. An Odd Proof

Write and **English proof** of the following claim: If n, m are odd integers, then $2n + m$ is odd.

8. A Rational Contradiction

Recall that a real number x is **rational** iff there exist integers p and q , with $q \neq 0$, such that $x = \frac{p}{q}$. Formally, for $x \in \mathbb{R}$, $\text{Rational}(x) := \exists p \exists q \in \mathbb{Z} (q \neq 0 \wedge x = \frac{p}{q})$.

Write an **English proof** of the following statement:

For all real numbers a, b , if a is rational and ab is irrational, then b is irrational.

- (a) Introduce any arbitrary variables you may need.
- (b) Assume the premise of the implication.
- (c) Unroll the definitions from your assumptions if necessary (use your judgment).
- (d) We're going to use Reductio Ad Absurdum to prove that b is irrational (not rational). Write down the assumption we must make in order to do that.
- (e) Finish the rest of the proof.