CSE 390Z: Mathematics for Computation Workshop

Week 8 Workshop Solutions

Conceptual Review

(a) Set Definitions

Set Equality: $A = B := \forall x (x \in A \leftrightarrow x \in B)$

Subset: $A \subseteq B := \forall x (x \in Ax \in B)$ Union: $A \cup B := \{x : x \in A \lor x \in B\}$ Intersection: $A \cap B := \{x : x \in A \land x \in B\}$

Set Difference: $A \setminus B = A - B := \{x : x \in A \land x \notin B\}$

Set Complement: $\overline{A} = A^C := \{x : x \notin A\}$

Powerset: $\mathcal{P}(A) := \{B : B \subseteq A\}$

Cartesian Product: $A \times B := \{(a, b) : a \in A, b \in B\}$

(b) How do we prove that for sets A and B, $A \subseteq B$?

Solution:

Let $x \in A$ be arbitrary... thus $x \in B$. Since x was arbitrary, $A \subseteq B$.

(c) How do we prove that for sets A and B, A=B?

Solution:

Use two subset proofs to show that $A \subseteq B$ and $B \subseteq A$.

1. A Basic Subset Proof

Prove that $A \cap B \subseteq A \cup B$.

Solution:

Let $x \in A \cap B$ be arbitrary. Then by definition of intersection, $x \in A$ and $x \in B$. So certainly $x \in A$ or $x \in B$. Then by definition of union, $x \in A \cup B$.

2. Set Equality Proof

(a) Write an English proof to show that $A \cap (A \cup B) \subseteq A$ for any sets A, B.

Solution:

Let x be an arbitrary member of $A \cap (A \cup B)$. Then by definition of intersection, $x \in A$ and $x \in A \cup B$. So certainly, $x \in A$. Since x was arbitrary, $A \cap (A \cup B) \subseteq A$.

(b) Write an English proof to show that $A \subseteq A \cap (A \cup B)$ for any sets A, B.

Solution:

Let $y \in A$ be arbitrary. So certainly $y \in A$ or $y \in B$. Then by definition of union, $y \in A \cup B$. Since $y \in A$ and $y \in A \cup B$, by definition of intersection, $y \in A \cap (A \cup B)$. Since y was arbitrary, $A \subseteq A \cap (A \cup B)$.

(c) Combine part (a) and (b) to conclude that $A \cap (A \cup B) = A$ for any sets A, B.

Solution:

Since $A \cap (A \cup B) \subseteq A$ and $A \subseteq A \cap (A \cup B)$, we can deduce that $A \cap (A \cup B) = A$.

3. Subsets

Prove or disprove: for any sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Solution:

Let A, B, C be sets, and suppose $A \subseteq B$ and $B \subseteq C$. Let x be an arbitrary element of A. Then, by definition of subset, $x \in B$, and by definition of subset again, $x \in C$. Since x was an arbitrary element of A, we see that all elements of A are in C, so by definition of subset, $A \subseteq C$. So, for any sets A, B, C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

4. $\cup \rightarrow \cap$?

Prove or disprove: for all sets A and B, $A \cup B \subseteq A \cap B$.

Solution:

We wish to disprove this claim via a counterexample. Choose $A=\{1\}$, $B=\varnothing$. Note that $A\cup B=\{1\}\cup\varnothing=\{1\}$ by definition of set union. Note that $A\cap B=\{1\}\cap\varnothing=\varnothing$ by definition of set intersection. $\{1\}\not\subseteq\varnothing$, so the claim does not hold for these sets. Since we found a counterexample to the claim, we have shown that it is not the case that $A\cup B\not\subseteq A\cap B$ for all sets A and B.

5. Set Equality Proof II

We want to prove that $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

(a) First prove this with a chain of logical equivalences proof.

Solution:

Let x be arbitrary. Observe:

$$\begin{array}{ll} A \setminus (B \cap C) \equiv (x \in A) \wedge (x \not\in B \cap C) & \text{Def of Set Difference} \\ \equiv (x \in A) \wedge \neg (x \in B \cap C) & \text{Def of element} \\ \equiv (x \in A) \wedge \neg ((x \in B) \wedge (x \in C)) & \text{Def of Intersection} \\ \equiv (x \in A) \wedge (\neg (x \in B) \vee \neg (x \in C)) & \text{DeMorgan's Law} \\ \equiv (x \in A) \wedge ((x \not\in B) \vee (x \not\in C)) & \text{Def of element} \\ \equiv ((x \in A) \wedge (x \not\in B)) \vee ((x \in A) \wedge (x \not\in C)) & \text{Distributivity} \\ \equiv (x \in A \setminus B) \vee (x \in A \setminus C) & \text{Def of Set Difference} \\ \equiv x \in (A \setminus B) \cup (A \setminus C) & \text{Def of Union} \end{array}$$

Since x was arbitrary, we have shown $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

(b) Now prove this with an English proof that is made of two subset proofs.

Solution:

Let $x \in A \setminus (B \cap C)$ be arbitrary. Then by definition of set difference, $x \in A$ and $x \notin B \cap C$. Then by definition of intersection, $x \notin B$ or $x \notin C$. Thus (by distributive property of propositions) we have $x \in A$ and $x \notin B$, or $x \in A$ and $x \notin C$. Then by definition of set difference, $x \in (A \setminus B)$ or $x \in (A \setminus C)$. Then by definition of union, $x \in (A \setminus B) \cup (A \setminus C)$. Since x was arbitrary, we have shown $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$.

Let $x \in (A \setminus B) \cup (A \setminus C)$ be arbitrary. Then by definition of union, $x \in (A \setminus B)$ or $x \in (A \setminus C)$. Then by definition of set difference, $x \in A$ and $x \notin B$, or $x \in A$ and $x \notin C$. Then (by distributive property of propositions) $x \in A$, and $x \notin B$ or $x \notin C$. Then by definition of intersection, $x \in A$ and $x \notin (B \cap C)$. Then by definition of set difference, $x \in A \setminus (B \cap C)$. Since x was arbitrary, we have shown that $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C)$.

Since $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$ and $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C)$, we have shown $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

6. Cartesian Product Proof

Write an English proof to show that $A \times C \subseteq (A \cup B) \times (C \cup D)$.

Solution:

Let $x \in A \times C$ be arbitrary. Then x is of the form x = (y, z), where $y \in A$ and $z \in C$. Then certainly $y \in A$ or $y \in B$. Then by definition of union, $y \in (A \cup B)$. Similarly, since $z \in C$, certainly $z \in C$ or $z \in D$. Then by definition, $z \in (C \cup D)$. Since x = (y, z), then $x \in (A \cup B) \times (C \cup D)$. Since x was arbitrary, we have shown $A \times C \subseteq (A \cup B) \times (C \cup D)$.

7. Structural Induction: Divisible by 4

Define a set \mathfrak{B} of numbers by:

- 4 and 12 are in $\mathfrak B$
 - If $x \in \mathfrak{B}$ and $y \in \mathfrak{B}$, then $x + y \in \mathfrak{B}$ and $x y \in \mathfrak{B}$

Prove by induction that every number in $\mathfrak B$ is divisible by 4.

Complete the proof below:

Solution:

Let P(b) be the claim that $4\mid b$. We will prove P(b) is true for all numbers $b\in\mathfrak{B}$ by structural induction.

Base Case:

- $4 \mid 4$ is trivially true, so P(4) holds.
- $12 = 3 \cdot 4$, so $4 \mid 12$ and P(12) holds.

Inductive Hypothesis: Suppose P(x) and P(y) for some arbitrary $x,y\in\mathfrak{B}$. **Inductive Step:**

Goal: Prove
$$P(x+y)$$
 and $P(x-y)$

Per the IH, $4 \mid x$ and $4 \mid y$. By the definition of divides, x = 4k and y = 4j for some integers k, j.

Case 1: Goal: Show P(x + y)

x + y = 4k + 4j = 4(k + j). Since integers are closed under addition, k + j is an integer, so $4 \mid x + y$ and P(x + y) holds.

Case 2: Goal: Show P(x-y)

Similarly, $x-y=4k-4j=4(k-j)=4(k+(-1\cdot j))$. Since integers are closed under addition and multiplication, and -1 is an integer, we see that k-j must be an integer. Therefore, by the definition of divides, $4\mid x-y$ and P(x-y) holds.

So, P(t) holds in both cases.

Conclusion: Therefore, P(b) holds for all numbers $b \in \mathfrak{B}$.

8. Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are **CharTree**s and $c \in \Sigma$, then CharTree(L, c, R) is also a **CharTree**

Intuitively, a **CharTree** is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

• The preorder function returns the preorder traversal of all elements in a CharTree.

$$\begin{array}{ll} \mathsf{preorder}(\mathtt{Null}) &= \varepsilon \\ \mathsf{preorder}(\mathtt{CharTree}(L,c,R)) &= c \cdot \mathsf{preorder}(L) \cdot \mathsf{preorder}(R) \end{array}$$

• The postorder function returns the postorder traversal of all elements in a CharTree.

$$\begin{array}{ll} \mathsf{postorder}(\mathtt{Null}) &= \varepsilon \\ \mathsf{postorder}(\mathsf{CharTree}(L,c,R)) &= \mathsf{postorder}(L) \cdot \mathsf{postorder}(R) \cdot c \end{array}$$

• The mirror function produces the mirror image of a **CharTree**.

$$\begin{split} & \mathsf{mirror}(\mathtt{Null}) &= \mathtt{Null} \\ & \mathsf{mirror}(\mathtt{CharTree}(L, c, R)) &= \mathtt{CharTree}(\mathsf{mirror}(R), c, \mathsf{mirror}(L)) \end{split}$$

• Finally, for all strings x, let the "reversal" of x (in symbols x^R) produce the string in reverse order.

Additional Facts:

You may use the following facts:

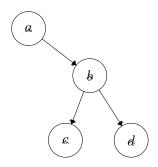
- \bullet For any strings $x_1,...,x_k$: $(x_1\cdot...\cdot x_k)^R=x_k^R\cdot...\cdot x_1^R$
- $\bullet \ \ \text{For any character} \ c, \ c^R = c \\$

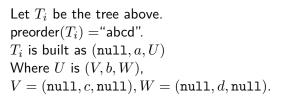
Statement to Prove:

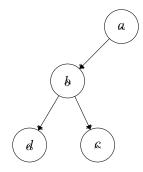
Show that for every **CharTree** T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every **CharTree**, T: $[\operatorname{preorder}(T)]^R = \operatorname{postorder}(\operatorname{mirror}(T))$.

There is an example and space to work on the next page.

Example for Intuition:







This tree is $\operatorname{mirror}(T_i)$. $\operatorname{postorder}(\operatorname{mirror}(T_i)) = \operatorname{"dcba"}$, $\operatorname{"dcba"}$ is the reversal of "abcd" so $[\operatorname{preorder}(T_i)]^R = \operatorname{postorder}(\operatorname{mirror}(T_i))$ holds for T_i

Solution:

Let P(T) be " $[\operatorname{preorder}(T)]^R = \operatorname{postorder}(\operatorname{mirror}(T))$ ". We show P(T) holds for all **CharTrees** T by structural induction.

 $\textbf{Base case } (T = \texttt{Null}): \ \mathsf{preorder}(T)^R = \varepsilon^R = \varepsilon = \mathsf{postorder}(\texttt{Null}) = \mathsf{postorder}(\mathsf{mirror}(\texttt{Null})), \ \mathsf{so} \ P(\texttt{Null}) + \mathsf{polds}.$

Inductive hypothesis: Suppose $P(L) \wedge P(R)$ for arbitrary CharTrees L, R. Inductive step:

We want to show $P(\mathtt{CharTree}(L,c,R))$, i.e. $[\mathsf{preorder}(\mathtt{CharTree}(L,c,R))]^R = \mathsf{postorder}(\mathtt{mirror}(\mathtt{CharTree}(L,c,R)))$.

Let c be an arbitrary element in Σ , and let $T = \mathsf{CharTree}(L, c, R)$

$$\begin{split} \operatorname{preorder}(T)^R &= [c \cdot \operatorname{preorder}(L) \cdot \operatorname{preorder}(R)]^R & \operatorname{defn \ of \ preorder} \\ &= \operatorname{preorder}(R)^R \cdot \operatorname{preorder}(L)^R \cdot c^R & \operatorname{Fact} \ 1 \\ &= \operatorname{preorder}(R)^R \cdot \operatorname{preorder}(L)^R \cdot c & \operatorname{Fact} \ 2 \\ &= \operatorname{postorder}(\operatorname{mirror}(R)) \cdot \operatorname{postorder}(\operatorname{mirror}(L)) \cdot c & \operatorname{by \ I.H.} \\ &= \operatorname{postorder}(\operatorname{CharTree}(\operatorname{mirror}(R), c, \operatorname{mirror}(L)) & \operatorname{recursive \ defn \ of \ postorder} \\ &= \operatorname{postorder}(\operatorname{mirror}(\operatorname{CharTree}(L, c, R))) & \operatorname{recursive \ defn \ of \ mirror} \\ &= \operatorname{postorder}(\operatorname{mirror}(T)) & \operatorname{defn \ of \ } T \end{split}$$

So $P(\mathtt{CharTree}(L,c,R))$ holds.

By the principle of induction, P(T) holds for all **CharTrees** T.