
CSE 390z: Mathematics for Computation Workshop
Week 5 Workshop Solutions

0. Conceptual Review
(a) Definitions

a divides b: a | b ↔ ∃k ∈ Z (b = ka)
a is congruent to b modulo m: a ≡m b ↔ m | (a− b)

(b) How do you know if a multiplicative inverse does not exist?
A multiplicative inverse does not exist when gcd(a, b) 6= 1.

(c) Bezout’s theorem: If a and b are positive integers, then there exist integers s and t such that gcd(a, b) is
equal to what?

gcd(a, b) = sa+ tb

(d) What is Euclid’s algorithm? What does it help us calculate?
Euclid’s algorithm helps us find gcd(a, b).The algorithm is as follows:

• Repeatedly use gcd(a, b) = gcd(b, a%b)

• When you reach gcd(g, 0), return g.

1. Modular Multiplication
Write an English proof to prove that for an integer m > 0 and any integers a, b, c, d, if a ≡m b and c ≡m d,
then ac ≡m bd.

Solution:
Let m > 0, a, b, c, d be arbitrary integers. Assume that a ≡m b and c ≡m d. Then by definition of mod,
m | (a− b) and m | (c− d). Then by definition of divides, there exists some integer k such that a− b = mk,
and there exists some integer j such that c − d = mj. Then a = b +mk and c = d +mj. So, multiplying,
ac = (b + mk)(d + mj) = bd + mkd + mjb + m2jk = bd + m(kd + jb + mjk). Subtracting bd from both
sides, ac − bd = m(kd + jb +mjk). By definition of divides, m | ac − bd. Then by definition of congruence,
ac ≡m bd.
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2. Proofs by Contrapositive
For each part, write a proof by contrapositive of the statement.

(a) If a2 6≡n b2, then a 6≡n b.

Solution:
We argue by contrapositive. Suppose a ≡n b. Then, by definition of equivalence mod n, n|(a − b) and
by definition of divides, there exists some integer k such that a − b = nk. Multiplying both sides of the
equation by a+ b, we get (a− b)(a+ b) = a2 − b2 = nk(a+ b). Since integers are closed under addition
and multiplication, k(a+b) must be an integer. Therefore, n|a2−b2 by definition of divides and a2 ≡n b2

by definition of equivalence mod n. Thus, the original statement also holds by contrapositive.

(b) For all integers a, b, if 3 - ab, then 3 - a and 3 - b.

Solution:
Let a, b be an arbitrary integers. We argue by contrapositive. Suppose 3 | a or 3 | b. Thus, there are two
cases to consider:
Case 1:
Suppose 3 | a. Then, by definition of divides, there exists some integer k such that a = 3k. Multiplying
both sides by b, we get ab = 3kb. Since integers are closed under multiplication, kb is an integer. Then,
by definition of divides, 3 | ab.
Case 2:
Suppose 3 | b. Then, by definition of divides, there exists some integer j such that b = 3j. Multiplying
both sides by a, we get ab = 3ja. Since integers are closed under multiplication, ja is an integer. Then,
by definition of divides, 3 | ab.
In both cases, if 3 | a or 3 | b, then 3 | ab. Thus, the contrapositive is also true. Since a, b were arbitrary,
this proves that the statement is true for all integers a, b.
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3. Don’t be Irrational!
Recall that the predicate Rational(x) is defined as ∃a∃b(Integer(a) ∧ Integer(b) ∧ b 6= 0 ∧ x = a

b ).
One of the following statements is true, and one is false:

• If xy and x are both rational, then y is also rational.

• If x− y and x are both rational, then y is also rational.

Decide which statement is true and which statement is false. Prove the true statement, and disprove the false
statement. For the disproof, it will be helpful to use proof by counterexample.

Solution:
Claim: If xy and x are both rational, then y is also rational.
We wish to disprove this through counterexample. Let x be 0, which is rational. x ∗ y will be 0 regardless of y,
so for an irrational y like y = π, x and xy are rational, while y is not.

Claim: If x− y and x are both rational, then y is also rational.

Proof. Suppose x and x − y are rational. By the definition of rational numbers, if x and x − y are rational,
then there are a, b, n,m ∈ Z with b,m 6= 0 such that x = a

b and x− y = n
m . Then:

x− y =
n

m
Given

y = x− n

m
Algebra

y =
a

b
− n

m
Substituting x =

a

b

Now we can rearrange this expression for y:

y =
a

b
− n

m

=
a

b
∗ m

m
− n

m
∗ b

b

=
am

bm
− nb

bm

=
am− bn

bm

Since integers are closed on multiplication and subtraction, am, bn, bm ∈ Z, and therefore am− bn ∈ Z. Since
b,m 6= 0, bm 6= 0 also, and therefore for p = am − bn and q = bm, y = p

q for p, q ∈ Z with q 6= 0. By the
definition of rational, y is rational.

4. More Number Theory Practice
For each of the following parts, prove or disprove the claim.

(a) If a | b and c | (−a), then (−c) | b.

Solution:
Suppose a | b and c | (−a). By definition of divides, b = ka and −a = cj for some integers k, j. By
algebra, a = −cj. Substituting a into the first equation, we get b = k(−cj) = (−kj)(−c). Then, by
definition of divides, (−c) | b and the claim holds.

(b) For all a, b, n, x ∈ Z, a ≡n b implies xa ≡n xb.

3



Solution:
We can disprove this through counterexample. Let a = 2, b = 5, n = 3, x = 2. Since 2 ≡3 5, a ≡n b. But
22 6≡3 25 because 22 (mod 3) = 4 (mod 3) = 1 and 25 (mod 3) = 32 (mod 3) = 2, and 1 6= 2. Therefore,
the implication is false.

(c) For all integers n, if n is not divisible by 3, then n2 ≡3 1.

Solution:
Let n be an arbitrary integer and suppose that n is not divisible by 3. Then, there are two cases:
Case 1: n ≡3 1
By definition of congruence and divides, 3 | (n − 1) so n − 1 = 3k for some integer k. Rearranging, we
get n = 3k + 1. So, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1. Then, n2 − 1 = 3(3k2 + 2k).
Since 3k2 + 2k is an integer, 3 | (n2 − 1) by definition of divides. By definition of congruence, n2 ≡3 1

Case 2: n ≡3 2
By definition of congruence and divides, 3|(n− 2) so n− 2 = 3j for some integer j. Rearranging, we get
n = 3j + 2. So, n2 = 9j2 + 12j + 4 = 3(3j2 + 4j + 1) + 1. Then, n2 − 1 = 3(3j2 + 4j + 1). Since
3j2 + 4j + 1 is an integer, 3 | (n2 − 1) by definition of divides. By definition of congruence, n2 ≡3 1.
So, in all cases, n2 ≡3 1. Since n was arbitrary, the claim holds for all integers n.

5. Modular Arithmetic
Prove that for any odd integer a there is an integer b that satisfies ab ≡8 2.
Hint: You need to reason about the gcd(a,8) and use Bezout’s theorem.
Solution:
Let a be an arbitrary odd integer. Since a is not even, a does not divide 8. Since 8 is only divisible by 1, 2, 4,
and 8, we have gcd(a, 8) = 1. By Bezout’s Theorem, we know gcd(a, 8) = 1 = ax+ 8y for some integers x, y.
By algebra, 8y = 1−ax. Multiplying both sides by 2, we get 8(2y) = 2−a(2x). Since integers are closed under
multiplication, 2y and 2x are integers. By definition of divides, 8|(2− a(2x)) and by definition of equivalence,
a(2x) ≡8 2. So, there is an integer b = 2x that satisfies ab ≡8 2. Since a was an arbitrary odd integer, there is
an integer b that satisfies ab ≡8 2 for any odd integer a.
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6. Extended Euclidean Algorithm
Find all solutions in the range of 0 ≤ x < 2021 to the modular equation:

311x ≡2021 3

Solution:

gcd(2021, 311) = gcd(311, 2021 mod 311) = gcd(311, 155)
= gcd(155, 311 mod 155) = gcd(155, 1)
= 1

Then we know that there is a multiplicative inverse:

2021 = 311 ∗ 6 + 155

311 = 155 ∗ 2 + 1

155 = 1 ∗ 155

From here, we can rearrange the equations to get:

155 = 2021− 311 ∗ 6
1 = 311− 155 ∗ 2

From here, we use back substitution and plug these back into our equations:

1 = 311− 155 ∗ 2
1 = 311− 2 ∗ (2021− 311 ∗ 6)
1 = 311− 2 ∗ 2021 + 12 ∗ 311
1 = 13 ∗ 311− 2 ∗ 2021

So the multiplicative inverse is 13, i.e. 311 ∗ 13 ≡2021 1. We can then multiply both sides of the original
modular equation by 13 to get 13 ∗ 311x ≡2021 13 ∗ 3. Simplifying gives us x ≡2021 39. By the definition of
congruence and division we have x = 39 + 2021k for k ∈ N, but since we’re only asked for solutions in the
range of 0 ≤ x < 2021, x = 39.
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7. Weak Induction Warmup
Prove by induction on n that for all integers n ≥ 4, the inequality n! > 2n is true.
Complete the induction proof below.
Solution:
Let P (n) be "n! > 2n". We will prove P (n) is true for all n ∈ N, n ≥ 4, by induction.

Base Case: (n = 4): 4! = 24 and 24 = 16, since 24 > 16, P (4) is true.

Inductive Hypothesis: Suppose that P (k) is true for some arbitrary integer k ∈ N, k ≥ 4.

Inductive Step:
Goal: Show P (k+1), i.e. show (k+1)! > 2k+1

(k + 1)! = k! · (k + 1)

> 2k · (k + 1) (By I.H., k! > 2k)
> 2k · 2 (Since k ≥ 4, so k + 1 ≥ 5 > 2)
= 2k+1

Conclusion: So by induction, P (n) is true for all n ∈ N, n ≥ 4.

8. Induction with Divides
Prove that 9 | (n3 + (n+ 1)3 + (n+ 2)3) for all n > 1 by induction.
Solution:
Let P (n) be “9 | n3 + (n+ 1)3 + (n+ 2)3”. We will prove P (n) for all integers n > 1 by induction.

Base Case (n = 2): 23 + (2 + 1)3 + (2 + 2)3 = 8 + 27 + 64 = 99 = 9 · 11, so 9 | 23 + (2 + 1)3 + (2 + 2)3, so
P (2) holds.

Inductive Hypothesis: Assume that 9 | k3 + (k + 1)3 + (k + 2)3 for an arbitrary integer k > 1. Note that
this is equivalent to assuming that k3 + (k + 1)3 + (k + 2)3 = 9j for some integer j by the definition of
divides.
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Inductive Step: Goal: Show 9 | (k + 1)3 + (k + 2)3 + (k + 3)3

(k + 1)3 + (k + 2)3 + (k + 3)3 = (k2 + 6k + 9)(k + 3) + (k + 1)3 + (k + 2)3 [expanding trinomial]
= (k3 + 6k2 + 9k + 3k2 + 18k + 27) + (k + 1)3 + (k + 2)3 [expanding binomial]
= 9k2 + 27k + 27 + k3 + (k + 1)3 + (k + 2)3 [adding like terms]
= 9k2 + 27k + 27 + 9j [by I.H.]
= 9(k2 + 3k + 3 + j) [factoring out 9]

Since k and j are integers, k2 + 3k + 3 + j is also an integer. Therefore, by the definition of divides,
9 | (k + 1)3 + (k + 2)3 + (k + 3)3, so P (k) → P (k + 1) for an arbitrary integer k > 1.

Conclusion: P (n) holds for all integers n > 1 by induction.
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