Week 9 Workshop

0. Conceptual Review

(a) Regular expression rules: Basis: ϵ , a for $a \in \Sigma$ Recursive: If A, B are regular expressions, $(A \cup B), AB$, and A^* are regular expressions.

1. Regular Expressions Warmup

Consider the following Regular Expression (RegEx):

 $1(45 \cup 54)^*1$

List 5 strings accepted by the RegEx and 5 strings from $T := \{1, 4, 5\}^*$ rejected by the RegEx. Then, summarize this RegEx in your own words.

2. Context Free Grammars Warmup

Consider the following CFG which generates strings from the language V := $\{0, 1, 2, 3, 4\}^*$

$$\begin{aligned} \mathbf{S} &\to 0\mathbf{X}4 \\ \mathbf{X} &\to 1\mathbf{X}3 \mid 2 \end{aligned}$$

List 5 strings generated by the CFG and 5 strings from V not generated by the CFG. Then, summarize this CFG in your own words.

3. Constructing RegExs and CFGs

For each of the following, construct a regular expression and CFG for the specified language.

(a) Strings from the language $S := \{a\}^*$ with an even number of a's.

(b) Strings from the language $S:=\{a,b\}^*$ with an even number of a 's.

(c) Strings from the language $S := \{a, b\}^*$ with odd length.

(d) (Challenge) Strings from the language $S := \{a, b\}^*$ with an even number of a's or an odd number of b's.

4. Constructing DFAs

For each of the following, construct a DFA for the specified language.

(a) Strings of a's and b's with odd length ($\Sigma = \{a, b\}$).

(b) Strings with an even number of a's ($\Sigma = \{a, b\}$).

(c) Strings with an odd number of b's ($\Sigma = \{a, b\}$).

(d) Strings with an even number of a's or an odd number of b's ($\Sigma = \{a, b\}$).

5. Challenge: Constructing DFAs 2

Using the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5\}$, define the language L as follows. If x is a string from $\Sigma *$ with characters x_0, \ldots, x_n , then $x \in L$ iff: for every i between 0 and n, if x_i is an odd digit, then $x_k > x_i$ for every k > i. For example, if one of the digits is a 3, ever digit after it must be a 4 or higher.

(a) List 3 strings in L and 3 strings from $\Sigma *$ not in L.

(b) Construct a regular expression for the language L.

(c) Construct a CFG for the language L.

(d) Construct a DFA for the language L.