CSE 390Z: Mathematics for Computation Workshop

Week 6 Workshop

0. Induction: Warm-Up

Prove by induction that $5 \mid (6^n - 1)$ for all $n \in \mathbb{N}$.

1. Induction: Equality

Prove by induction that for every $n \in \mathbb{N}$, the following equality is true:

 $0 \cdot 2^{0} + 1 \cdot 2^{1} + 2 \cdot 2^{2} + \dots + n \cdot 2^{n} = (n-1)2^{n+1} + 2.$

2. Induction: Inequality

Prove by induction on n that for all integers $n \ge 0$ the inequality $(3 + \pi)^n \ge 3^n + n\pi 3^{n-1}$ is true.

3. Inductively Odd

An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and needs your help proving that it is correct.

```
public static boolean oddr(int n) {
    if (n == 0)
        return False;
    else
        return !oddr(n-1);
}
```

Help the student by writing an inductive proof to prove that for all integers $n \ge 0$, the method oddr returns True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions $Odd(n) := \exists x \in \mathbb{Z}(n = 2x + 1)$ and $Even(n) := \exists x \in \mathbb{Z}(n = 2x)$; !True = False and !False = True.

4. Strong Induction: Stamp Collection

A store sells 3 cent and 5 cent stamps. Use strong induction to prove that you can make exactly n cents worth of stamps for all $n \ge 10$.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

5. Strong Induction: Recursively Defined Functions

Consider the function f(n) defined for integers $n \ge 1$ as follows: f(1) = 1 for n = 1 f(2) = 4 for n = 2 f(3) = 9 for n = 3f(n) = f(n-1) - f(n-2) + f(n-3) + 2(2n-3) for $n \ge 4$

Prove by strong induction that for all $n \ge 1$, $f(n) = n^2$. Complete the induction proof below.

6. Strong Induction: A Variation of the Stamp Problem

A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy". For example, P(3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that P(n) is true for any $n \ge 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.