CSE 390Z: Mathematics for Computation Workshop

QuickCheck: Set Theory Proof Solutions

Please submit a response to the following questions on Gradescope. We do not grade on accuracy, so please submit your best attempt. You may either typeset your responses or hand-write them. Note that hand-written solutions must be legible to be graded.

We have created **this template** if you choose to typeset with Latex. **This guide** has specific information about scanning and uploading pdf files to Gradescope.

0. Set Proof: A Complement Makes all the Difference

Consider the following statement: For sets A, B,

$$A \cap \overline{(A \setminus B)} = A \cap B$$

(a) Prove the statement using a subset proof in each direction.

Solution:

Let A and B be arbitrary sets. First we show $A\cap \overline{(A\setminus B)}\subseteq A\cap B$. Let x be an arbitrary element of $A\cap \overline{(A\setminus B)}$. By definition of \cap and complement, x is an element of A and is not an element of $A\setminus B$. By definition of set difference this means, $x\in A\wedge \neg(x\in A\wedge x\not\in B)$. By DeMorgan's law we have: $x\in A\wedge (x\not\in A\vee x\in B)$. Distributing we find, $(x\in A\wedge x\not\in A)\vee (x\in A\wedge x\in B)$. By definition of empty set, union, and intersection we find: $(x\in A\wedge x\not\in A)\vee (x\in A\wedge x\in B)=\varnothing\cup (A\cap B)=A\cap B$. Therefore, since x was arbitrary we have found every element in $A\cap \overline{(A\setminus B)}$ is in $A\cap B$, so it follows that $A\cap \overline{(A\setminus B)}\subseteq A\cap B$.

Now we show $A\cap B\subseteq A\cap \overline{(A\setminus B)}$. Let x be an arbitrary element of $A\cap B$. Then, by definition of intersection, we know $(x\in A\wedge x\in B)$. By identity, we can state $(x\in A\wedge x\in B)\vee (x\in A\wedge x\not\in A)$. By definition of distributivity we have, $x\in A\wedge (x\not\in A\vee x\in B)$. Then by DeMorgan's law we have $x\in A\wedge (x\in A\wedge x\not\in B)$. Then by definition of intersection, complement, and set difference we have $A\cap \overline{(A\setminus B)}$. Therefore, since x was arbitrary we have found that every element in $A\cap B$ is in $A\cap \overline{(A\setminus B)}$, thus $A\cap B\subseteq A\cap \overline{(A\setminus B)}$.

Since we have shown subset equality in both directions, we have proven $A \cap (\overline{A \setminus B}) = A \cap B$.

(b) Prove the statement by doing a chain of equivalences proof.

Solution:

Let x be arbitrary. Observe that:

$$x \in A \cap \overline{(A \setminus B)} \equiv (x \in A) \land (x \in \overline{A \setminus B}) \qquad \text{Def of Intersection}$$

$$\equiv (x \in A) \land (x \notin (A \setminus B)) \qquad \text{Def of Complement}$$

$$\equiv (x \in A) \land \neg (x \in (A \setminus B)) \qquad \text{Def of Set Difference}$$

$$\equiv (x \in A) \land \neg (x \in A \land x \notin B) \qquad \text{DeMorgan's Law}$$

$$\equiv ((x \in A) \land (x \notin A \lor x \in B)) \qquad \text{Distributivity}$$

$$\equiv F \lor ((x \in A) \land (x \in B)) \qquad \text{Negation}$$

$$\equiv (x \in A) \land (x \in B) \qquad \text{Identity}$$

$$\equiv x \in A \cap B \qquad \text{Def of Intersection}$$

Since x was arbitrary, we have shown $A \cap \overline{(A \setminus B)} = A \cap B$.

1. Video Solution

Watch this video on the solution after making an initial attempt. Then, answer the following questions.

- (a) What is one thing you took away from the video solution?
- (b) What topic from the quick check or lecture would you most like to review in workshop?