CSE 390Z: Mathematics for Computation Workshop

Practice 311 Final Solutions

Name: _____

UW ID: _____

Instructions:

- This is a **simulated practice final**. You will **not** be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 60 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam, totaling 100 points.

1. Language Representation (20 points)

Let the language L consist of all binary strings that do not contain 111.

(a) [5 points] Write a regular expression that represents L.

Solution:

 $(0 \cup 10 \cup 110)^* (1 \cup 11 \cup \epsilon)$

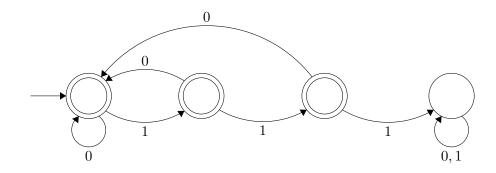
(b) [5 points] Write a CFG that generates all strings in L.

Solution:

$$\begin{split} \mathbf{S} &\rightarrow \mathbf{X}\mathbf{Y} \\ \mathbf{X} &\rightarrow 0\mathbf{X} \mid 10\mathbf{X} \mid 110\mathbf{X} \mid \epsilon \\ \mathbf{Y} &\rightarrow 1 \mid 11 \mid \epsilon \end{split}$$

(c) [5 points] Draw a DFA that accepts exactly the strings in L.

Solution:



(d) [5 points] Convert the following regular expression to a CFG:

 $10(0^* \cup 1^*)01$

Solution:

$$\begin{split} \mathbf{S} &\rightarrow 10 \mathbf{X} 01 \mid 10 \mathbf{Y} 01 \\ \mathbf{X} &\rightarrow 0 \mathbf{X} \mid \epsilon \\ \mathbf{Y} &\rightarrow 1 \mathbf{Y} \mid \epsilon \end{split}$$

2. Sets (20 points)

(a) [12 points] Prove using the Meta Theorem that for any sets A and B,

$$A \setminus \overline{B} = (A \cup \emptyset) \cap B$$

Hint 1: The empty set, \emptyset , is the set that contains no elements. i.e. $\emptyset ::= \{x : F\}$. Hint 2: If you get stuck, try working backwards!

Solution:

The claim is equivalent to $\forall x (x \in (A \setminus \overline{B}) \leftrightarrow x \in ((A \cup \emptyset) \cap B))$. Let x be arbitrary.

$x \in (A \setminus \overline{B}) \equiv x \in A \land \neg (x \in \overline{B})$	Def of set difference
$\equiv x \in A \land \neg \neg (x \in B)$	Def of complement
$\equiv x \in A \land x \in B$	Double Negation
$\equiv (x \in A \lor F) \land x \in B$	Identity
$\equiv (x \in A \lor x \in \varnothing) \land x \in B$	Def of \varnothing
$\equiv x \in (A \cup \varnothing) \land x \in B$	Def of union
$\equiv x \in (A \cup \varnothing) \cap B$	Def of intersection

Since x was arbitrary, we have shown that these sets contain the same elements and are therefore equal.

Determine if the following claims are true or false. Then explain your reasoning in 1-3 sentences. You may include images or examples in your explanation. You do not need to give a formal proof or disproof.

(b) [4 points] For all sets $A, B: (A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$.

Solution:

True. Both sets represent the set of elements that are in A or B but not in both. That is, both sets are equal to the set $\{x : x \in A \oplus x \in B\}$.

(c) [4 points] For all sets $A, B: \mathcal{P}(A) \times \mathcal{P}(B) \subseteq \mathcal{P}(A \times B)$.

Solution:

False. Consider $A = \{1\}$ and $B = \{2\}$. Then $(\{1\}, \{2\}) \in \mathcal{P}(A) \times \mathcal{P}(B)$ but $(\{1\}, \{2\}) \notin \mathcal{P}(A \times B)$.

3. Induction I (20 points)

Let the function $f : \mathbb{N} \to \mathbb{N}$ be defined as follows:

$$\begin{split} f(0)&=2\\ f(1)&=7\\ f(n)&=f(n-1)+2f(n-2) \text{ for } n\geq 2\\ \text{Prove that } f(n)&=3*2^n+(-1)^{n+1} \text{ for all integers } n\geq 0 \text{ using strong induction.} \end{split}$$

Solution:

Let P(n) be " $f(n) = 3 * 2^n + (-1)^{n+1}$. We will prove P(n) holds for all $n \ge 0$ by strong induction.

Base Cases:

 $\begin{array}{l} n=0;\\ f(0)=2\\ 3*2^0+(-1)^{0+1}=3*1+(-1)^1=3+(-1)=2.\\ 2=2\text{, so }P(0)\text{ holds}. \end{array}$

 $\begin{array}{l} n=1;\\ f(1)=7\\ 3*2^1+(-1)^{1+1}=3*2+(-1)^2=6+1=7\\ 7=7, \mbox{ so } P(1) \mbox{ holds}. \end{array}$

Inductive Hypothesis: Suppose that P(j) holds for all $0 \le j \le k$ for some arbitrary integer k. Inductive Step:

Goal: Show
$$P(k+1)$$
, i.e. show $f(k+1) = 3 * 2^{k+1} + (-1)^{(k+1)+1}$

$$\begin{split} f(k+1) &= f((k+1)-1) + 2f((k+1)-2) & \text{def. of } f \\ &= f(k) + 2f(k-1) \\ &= 3 * 2^k + (-1)^{k+1} + 2(3 * 2^{k-1} + (-1)^{(k-1)+1}) & \text{IH} \\ &= 3 * 2^k + (-1)^{k+1} + 2(3 * 2^{k-1} + (-1)^k) \\ &= 3 * 2^k + (-1)^{k+1} + 3 * 2^k + 2(-1)^k \\ &= 2 * 3 * 2^k + (-1)^{k+1} + 2(-1)^k \\ &= 3 * 2^{k+1} + (-1)^{k+1} + 2(-1)^k \\ &= 3 * 2^{k+1} + (-1)(-1)(-1)^{k+1} + 2(-1)(-1)(-1)^k & (-1)(-1) = 1 \\ &= 3 * 2^{k+1} - (-1)^{k+2} + 2(-1)^{k+2} \\ &= 3 * 2^{k+1} + (-1)^{(k+1)+1} \end{split}$$

Thus, P(k+1) holds.

We conclude that P(n) holds for all $n \ge 0$ by strong induction.

4. Induction II (20 points)

Let the set S be recursively defined as follows: Basis: $(0,0) \in S$ Recursive Step: If $(x, y) \in S$, then $(x + 2, y + 4) \in S$ and $(x + 4, y + 8) \in S$.

Prove that for all $(x, y) \in S$, x + y is divisible by 3.

Solution:

Define P((x,y)) to be the claim $3 \mid (x+y)$. We will prove that P((x,y)) holds for all $(x,y) \in S$ by structural induction.

Base Case: (x, y) = (0, 0)0 + 0 = 0 = 3 * 0. So, 3|(x + y) and P((0, 0)) holds.

Inductive Hypothesis: Suppose that P((a, b)) holds for some arbitrary $(a, b) \in S$. (i.e. 3|(a + b)).

Inductive Step:

Goal: Show
$$P((a+2,b+4))$$
 and $P((a+4,b+8))$

By the inductive hypothesis, $3 \mid (a+b)$. By definition of divides, 3k = a+b for some integer k.

(a+2) + (b+4) = a+b+6 = 3k+6 = 3(k+2)

So, $3 \mid ((a+2)+(b+4))$ which means P((a+2,b+4)) holds.

$$(a+4) + (b+8) = a+b+12 = 3k+12 = 3(k+4)$$

So, $3 \mid ((a+4)+(b+8))$ which means P((a+4,b+8)) holds.

Thus, P((x,y)) holds for all $(x,y) \in S$ by the principle of structural induction.

5. Irregularity (20 points)

Prove that the language $L = \{10^x 10^{x+1} 1 : x \ge 0\}$ is not regular.

Solution:

Suppose for the sake of contradiction there exists a DFA D that accepts L.

Let $S = \{10^n 1 : n \ge 0\}$. Since S contains infinitely number strings and D has a finite number of states, two strings in S must end up in the same state of D. Say those strings are $10^i 1$ and $10^j 1$ for some $i, j \ge 0$ where $i \ne j$. Now, append $0^{i+1} 1$ to both strings. The resulting strings are:

 $x=10^i10^{i+1}1.$ Note that $x\in L.$ $y=10^j10^{i+1}1.$ Note that $y\notin L$ since $i\neq j,j+1\neq i+1.$

Both x and y must end up at the same state, but since $x \in L$ and $y \notin L$, that state must be both an accept state and a reject state. This is a contradiction, which means there does not exist a DFA D which accepts L. This means L is not regular.