
CSE 390Z: Mathematics for Computation Workshop
Mid-Quarter Review Solutions

Name:

0. Training Wheels
For this problem, our domain of discourse is college football teams and college football conferences.
You are allowed to use the 6= symbol to check that two objects are not equivalent.
We will use the following predicates:

• Team(x) := x is a football team.

• UW(x) := x is the University of Washington football team.

• WSU(x) := x is the Washington State University football team.

• OSU(x) := x is the Oregon State University football team.

• OldPac(x) := x is the old Pac-12 Conference.

• NewPac(x) := x is the new Pac-2 Conference.

• Member(x, y) := the football team x has been a part of the conference y.

• Lost(x, y) := x lost to y in a football game.

(a) State whether the two statements below are equivalent. Provide a one sentence justification.

∃y
[
OldPac(y) ∧ ∀x

(
Team(x) →

(
UW(x) → Member(x, y)

))]
∃y

[
OldPac(y) ∧ ∀x

(
UW(x) → Member(x, y)

)]
Solution:
Yes, they are equivalent. The UW Huskies are already a football team, so there is no need to actually
state Team(x).

(b) Translate the following sentence into predicate logic.
Excluding WSU, at least one team has been a part of the new Pac-2 conference and the old Pac-12
conference.

Solution:

∃x∃y∃z
[
Team(x) ∧ ¬WSU(x) ∧ OldPac(y) ∧ Member(x, y) ∧ NewPac(z) ∧ Member(x, z)

]
(c) Translate the following statement into predicate logic.

UW has won against all football teams besides itself, and WSU has lost to all foootball teams besides
itself.
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Solution:

∃x∃y
[

UW(x) ∧ ∀a
(
(Team(a) ∧ (a 6= x)) → Lost(a, x)

)
∧

WSU(y) ∧ ∀b
(
(Team(b) ∧ (b 6= y)) → Lost(y, b)

)]
(d) Negate the following statement. Your final answer should have zero negations.

Warning: this statement makes absolutely no sense. Do NOT spend time thinking about its meaning.
We want you to blindly follow your equivalency laws here.

∀x∀y
[(

WSU(x) ∧ OSU(y)
)
∧
(
¬Lost(x, y) ∨ ¬Lost(y, x)

)]
Solution:
Students only need to write the final answer to receive full credit.

∃x∃y
[(

WSU(x) ∧ OSU(y)
)
→

(
Lost(x, y) ∧ Lost(y, x)

)]
The corresponding chain of equivalences is provided below for reference.

¬∀x∀y
[(

WSU(x) ∧ OSU(y)
)
∧
(
¬Lost(x, y) ∨ ¬Lost(y, x)

)]
≡ ¬∀x∀y

[(
WSU(x) ∧ OSU(y)

)
∧ ¬

(
Lost(x, y) ∧ Lost(y, x)

)]
DeMorgans

≡ ∃x∃y¬
[(

WSU(x) ∧ OSU(y)
)
∧ ¬

(
Lost(x, y) ∧ Lost(y, x)

)]
DeMorgans for Quantifiers

≡ ∃x∃y
[
¬
(
WSU(x) ∧ OSU(y)

)
∨ ¬¬

(
Lost(x, y) ∧ Lost(y, x)

)]
DeMorgans

≡ ∃x∃y
[
¬
(
WSU(x) ∧ OSU(y)

)
∨
(
Lost(x, y) ∧ Lost(y, x)

)]
Double Negation

≡ ∃x∃y
[(

WSU(x) ∧ OSU(y)
)
→

(
Lost(x, y) ∧ Lost(y, x)

)]
Law of Implication
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1. Normal Forms
Consider the following function F :

p q r F (p, q, r)

T T T F
T T F F
T F T T
T F F F
F T T T
F T F F
F F T F
F F F T

(a) Write a propositional logic expression for F in DNF form (ORs of ANDs).

Solution:

(p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ r) ∨ (¬p ∧ ¬q ∧ ¬r)

(b) Write a propositional logic expression for F in CNF form (ANDs of ORs).

Solution:

(¬p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ r) ∧ (p ∨ q ∨ ¬r)

2. Modular Arithmetic
Prove that for all integers x, y, n > 0, if x ≡6n 1 and y ≡7n 5 then 7x+ 2y ≡14n 17.

Hint: Apply the definition of congruence and divides.
Solution:
Let x, y, n > 0 be arbitrary integers. Suppose x ≡6n 1 and y ≡7n 5. Then by definition of congruence,
6n | (x − 1) and 7n | (y − 5). Then by definition of divides, there exists integers j, k such that x − 1 = 6nk
and y − 5 = 7nj. Thus x = 6nk + 1 and y = 7nj + 5. Then observe:

7x+ 2y = 7(6nk + 1) + 2(7nj + 5)

= 42nk + 7 + 14nj + 10

= 42nk + 14nj + 17

= 14n(3k + j) + 17

Then (7x+ 2y)− 17 = 14n(3k + j). Since k, j are integers, 3k + j is an integer. So by definition of divides,
14n | (7x+2y)−17. Then by definition of congruence, 7x+2y ≡14n 17. Since x, y, n were arbitrary, the claim
holds.
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3. Extended Euclidean Algorithm
Find all solutions in the range of 0 ≤ x < 2021 to the modular equation:

311x ≡2021 3

Solution:

gcd(2021, 311) = gcd(311, 2021 mod 311) = gcd(311, 155)
= gcd(155, 311 mod 155) = gcd(155, 1)
= 1

Then we know that there is a multiplicative inverse:

2021 = 311 ∗ 6 + 155

311 = 155 ∗ 2 + 1

155 = 1 ∗ 155

From here, we can rearrange the equations to get:

155 = 2021− 311 ∗ 6
1 = 311− 155 ∗ 2

From here, we use back substitution and plug these back into our equations:

1 = 311− 155 ∗ 2
1 = 311− 2 ∗ (2021− 311 ∗ 6)
1 = 311− 2 ∗ 2021 + 12 ∗ 311
1 = 13 ∗ 311− 2 ∗ 2021

So the multiplicative inverse is 13, i.e. 311 ∗ 13 ≡2021 1. We can then multiply both sides of the original
modular equation by 13 to get 13 ∗ 311x ≡2021 13 ∗ 3. Simplifying gives us x ≡2021 39. By the definition of
congruence and division we have x = 39 + 2021k for k ∈ N, but since we’re only asked for solutions in the
range of 0 ≤ x < 2021, x = 39.
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4. Induction
Prove by induction that 3n − 1 is divisible by 2 for any integer n ≥ 1.
Solution:
1. Let P(n) be the statement "3n − 1 is divisible by 2". We prove P(n) for all integers n ≥ 1 by induction.

2. Base Case: When n = 1, 3n − 1 = 31 − 1 = 3− 1 = 2. Since 2 | 2, the base case holds.

3. Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer k ≥ 1. Then 2 | 3k − 1. Then by
definition of divides, there exists some integer a such that 3k − 1 = 2a.

4. Inductive Step: Observe that...

3k+1 − 1 = 3(3k)− 1 Definition of Exponent
= 3(3k − 1 + 1)− 1 Subtract and Add by 1
= 3(2a+ 1)− 1 By IH
= 6a+ 3− 1 Algebra
= 6a+ 2 Algebra
= 2(3a+ 1) Algebra

Thus by definition of divides, 2 | 3k+1 − 1. So P(k + 1) holds.

5. Thus we have proven P(n) for all integers n ≥ 1 by induction.
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5. Strong Induction

Consider the function f , which takes a natural number as input and outputs a natural number.

f(n) =


1 if n = 0

2 if n = 1

f(n− 1) + 2 · f(n− 2) if n ≥ 2

Prove that f(n) = 2n for all n ∈ N.
Solution:
Let P (n) be the claim that f(n) = 2n. We will prove P (n) true for all n ∈ N by strong induction.

• f(0) = 1 = 1 = 20 so P (0) holds.

• f(1) = 2 = 2 = 21 so P (1) holds.

Suppose that for some arbitrary integer k ≥ 1, that P (j) holds for all j ∈ N such that j ≤ k.
Show P (k + 1), i.e. f(k + 1) = 2k+1

f(k + 1) = f(k + 1− 1) + 2 · f(k + 1− 2) Definition of f
= f(k) + 2 · f(k − 1)

= 2k + 2 · 2k−1 I.H. twice
= 2k + 2k−1+1

= 2k + 2k

= 2 · 2k

= 2k+1

Clearly, P (k + 1) holds.
Therefore, we have proven the claim true by strong induction.
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