Mid-Quarter Review Solutions

Name: _____

0. Training Wheels

For this problem, our domain of discourse is college football teams and college football conferences. You are allowed to use the \neq symbol to check that two objects are not equivalent. We will use the following predicates:

- $\operatorname{Team}(x) \coloneqq x$ is a football team.
- $UW(x) \coloneqq x$ is the University of Washington football team.
- WSU(x) := x is the Washington State University football team.
- $OSU(x) \coloneqq x$ is the Oregon State University football team.
- $OldPac(x) \coloneqq x$ is the old Pac-12 Conference.
- NewPac $(x) \coloneqq x$ is the new Pac-2 Conference.
- Member(x, y) := the football team x has been a part of the conference y.
- $Lost(x, y) \coloneqq x$ lost to y in a football game.
- (a) State whether the two statements below are equivalent. Provide a one sentence justification.

$$\begin{aligned} \exists y \Big[\texttt{OldPac}(y) \land \forall x \Big(\texttt{Team}(x) \to \big(\texttt{UW}(x) \to \texttt{Member}(x, y) \big) \Big) \Big] \\ \exists y \Big[\texttt{OldPac}(y) \land \forall x \Big(\texttt{UW}(x) \to \texttt{Member}(x, y) \Big) \Big] \end{aligned}$$

Solution:

Yes, they are equivalent. The UW Huskies are already a football team, so there is no need to actually state Team(x).

(b) Translate the following sentence into predicate logic.

Excluding WSU, at least one team has been a part of the new Pac-2 conference and the old Pac-12 conference.

Solution:

$$\exists x \exists y \exists z \left| \texttt{Team}(x) \land \neg \texttt{WSU}(x) \land \texttt{OldPac}(y) \land \texttt{Member}(x, y) \land \texttt{NewPac}(z) \land \texttt{Member}(x, z) \right|$$

(c) Translate the following statement into predicate logic.

UW has won against all football teams besides itself, and WSU has lost to all football teams besides itself.

Solution:

$$\exists x \exists y \Big[\operatorname{UW}(x) \land \forall a \big((\operatorname{Team}(a) \land (a \neq x)) \to \operatorname{Lost}(a, x) \big) \land \\ \operatorname{WSU}(y) \land \forall b \big((\operatorname{Team}(b) \land (b \neq y)) \to \operatorname{Lost}(y, b) \big) \Big]$$

(d) Negate the following statement. Your final answer should have zero negations.

Warning: this statement makes absolutely no sense. Do **NOT** spend time thinking about its meaning. We want you to blindly follow your equivalency laws here.

$$\forall x \forall y \Big[\big(\mathtt{WSU}(x) \land \mathtt{OSU}(y) \big) \land \big(\neg \mathtt{Lost}(x,y) \lor \neg \mathtt{Lost}(y,x) \big) \Big]$$

Solution:

Students only need to write the final answer to receive full credit.

$$\exists x \exists y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big) \to \big(\mathsf{Lost}(x,y) \land \mathsf{Lost}(y,x) \big) \Big]$$

The corresponding chain of equivalences is provided below for reference.

$$\neg \forall x \forall y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big) \land \big(\neg \mathsf{Lost}(x, y) \lor \neg \mathsf{Lost}(y, x) \big) \Big]$$

$$\equiv \neg \forall x \forall y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big) \land \neg \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$\equiv \exists x \exists y \neg \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big) \land \neg \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\neg \big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big) \lor \neg \neg \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\neg \big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big) \lor \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\neg \big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big) \lor \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big) \to \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big) \to \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big) \to \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big) \to \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big) \to \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big) \to \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big] \to \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big] \to \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big] \to \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big] \to \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

$$= \exists x \exists y \Big[\big(\mathsf{WSU}(x) \land \mathsf{OSU}(y) \big] \to \big(\mathsf{Lost}(x, y) \land \mathsf{Lost}(y, x) \big) \Big]$$

1. Normal Forms

Consider the following function F:

p	q	r	F(p,q,r)
Т	Т	Т	F
Т	Т	F	F
Т	F	Т	Т
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	F
F	F	F	Т

(a) Write a propositional logic expression for F in DNF form (ORs of ANDs).

Solution:

$$(p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (\neg p \land \neg q \land \neg r)$$

(b) Write a propositional logic expression for F in CNF form (ANDs of ORs).

Solution:

$$(\neg p \lor \neg q \lor \neg r) \land (\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor \neg r)$$

2. Modular Arithmetic

Prove that for all integers x, y, n > 0, if $x \equiv_{6n} 1$ and $y \equiv_{7n} 5$ then $7x + 2y \equiv_{14n} 17$.

Hint: Apply the definition of congruence and divides.

Solution:

Let x, y, n > 0 be arbitrary integers. Suppose $x \equiv_{6n} 1$ and $y \equiv_{7n} 5$. Then by definition of congruence, $6n \mid (x-1)$ and $7n \mid (y-5)$. Then by definition of divides, there exists integers j, k such that x - 1 = 6nk and y - 5 = 7nj. Thus x = 6nk + 1 and y = 7nj + 5. Then observe:

$$7x + 2y = 7(6nk + 1) + 2(7nj + 5)$$

= $42nk + 7 + 14nj + 10$
= $42nk + 14nj + 17$
= $14n(3k + j) + 17$

Then (7x + 2y) - 17 = 14n(3k + j). Since k, j are integers, 3k + j is an integer. So by definition of divides, $14n \mid (7x+2y) - 17$. Then by definition of congruence, $7x + 2y \equiv_{14n} 17$. Since x, y, n were arbitrary, the claim holds.

3. Extended Euclidean Algorithm

Find all solutions in the range of $0 \leq x < 2021$ to the modular equation:

$$311x \equiv_{2021} 3$$

Solution:

$$\begin{aligned} \gcd(2021,311) &= \gcd(311,2021 \ \text{mod} \ 311) = \gcd(311,155) \\ &= \gcd(155,311 \ \text{mod} \ 155) = \gcd(155,1) \\ &= 1 \end{aligned}$$

Then we know that there is a multiplicative inverse:

$$2021 = 311 * 6 + 155$$
$$311 = 155 * 2 + 1$$
$$155 = 1 * 155$$

From here, we can rearrange the equations to get:

$$155 = 2021 - 311 * 6$$
$$1 = 311 - 155 * 2$$

From here, we use back substitution and plug these back into our equations:

$$1 = 311 - 155 * 2$$

$$1 = 311 - 2 * (2021 - 311 * 6)$$

$$1 = 311 - 2 * 2021 + 12 * 311$$

$$1 = 13 * 311 - 2 * 2021$$

So the multiplicative inverse is 13, i.e. $311 * 13 \equiv_{2021} 1$. We can then multiply both sides of the original modular equation by 13 to get $13 * 311x \equiv_{2021} 13 * 3$. Simplifying gives us $x \equiv_{2021} 39$. By the definition of congruence and division we have x = 39 + 2021k for $k \in \mathbb{N}$, but since we're only asked for solutions in the range of $0 \le x < 2021$, x = 39.

4. Induction

Prove by induction that $3^n - 1$ is divisible by 2 for any integer $n \ge 1$. Solution:

1. Let P(n) be the statement " $3^n - 1$ is divisible by 2". We prove P(n) for all integers $n \ge 1$ by induction.

2. Base Case: When n = 1, $3^n - 1 = 3^1 - 1 = 3 - 1 = 2$. Since $2 \mid 2$, the base case holds.

3. Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer $k \ge 1$. Then $2 \mid 3^k - 1$. Then by definition of divides, there exists some integer a such that $3^k - 1 = 2a$.

4. Inductive Step: Observe that...

$3^{k+1} - 1 = 3(3^k) - 1$	Definition of Exponent
$= 3(3^k - 1 + 1) - 1$	Subtract and Add by 1
= 3(2a+1) - 1	By IH
= 6a + 3 - 1	Algebra
= 6a + 2	Algebra
= 2(3a+1)	Algebra

Thus by definition of divides, $2 \mid 3^{k+1} - 1$. So P(k + 1) holds.

5. Thus we have proven P(n) for all integers $n \ge 1$ by induction.

5. Strong Induction

Consider the function f, which takes a natural number as input and outputs a natural number.

$$f(n) = \begin{cases} 1 & \text{if } n = 0\\ 2 & \text{if } n = 1\\ f(n-1) + 2 \cdot f(n-2) & \text{if } n \ge 2 \end{cases}$$

Prove that $f(n) = 2^n$ for all $n \in \mathbb{N}$. Solution:

Let P(n) be the claim that $f(n) = 2^n$. We will prove P(n) true for all $n \in \mathbb{N}$ by strong induction.

- $f(0) = 1 = 1 = 2^0$ so P(0) holds.
- $f(1) = 2 = 2 = 2^1$ so P(1) holds.

Suppose that for some arbitrary integer $k \ge 1$, that P(j) holds for all $j \in \mathbb{N}$ such that $j \le k$. Show P(k+1), i.e. $f(k+1) = 2^{k+1}$

$$\begin{split} f(k+1) &= f(k+1-1) + 2 \cdot f(k+1-2) & \text{Definition of } f \\ &= f(k) + 2 \cdot f(k-1) \\ &= 2^k + 2 \cdot 2^{k-1} & \text{I.H. twice} \\ &= 2^k + 2^{k-1+1} \\ &= 2^k + 2^k \\ &= 2 \cdot 2^k \\ &= 2^{k+1} \end{split}$$

Clearly, P(k+1) holds.

Therefore, we have proven the claim true by strong induction.