CSE 390Z: Mathematics for Computation Workshop

Mid-Quarter Review Solutions

Name:

0. Training Wheels

For this problem, our domain of discourse is college football teams and college football conferences.

You are allowed to use the # symbol to check that two objects are not equivalent.

We will use the following predicates:

Team(x) := z is a football team.
UW(z) = x is the University of Washington football team.
WSU(z) := x is the Washington State University football team.

0SU(z) == = is the Oregon State University football team.

01dPac(z) := x is the old Pac-12 Conference.

NewPac(z) := x is the new Pac-2 Conference.

Member(z,y) := the football team x has been a part of the conference y.

Lost(z,y) := z lost to y in a football game.

State whether the two statements below are equivalent. Provide a one sentence justification.

Jy [OldPac(y) AVz (Team(a:) — (UW(x) — Member(z, Z/)))]

Jy [OldPac(y) AV (UW(:U) — Member(z, y))}

Solution:

Yes, they are equivalent. The UW Huskies are already a football team, so there is no need to actually
state Team(x).

Translate the following sentence into predicate logic.

Excluding WSU, at least one team has been a part of the new Pac-2 conference and the old Pac-12
conference.

Solution:

Jr3y3z [Team(x) A —WSU(x) A 01dPac(y) A Member(x,y) A NewPac(z) A Member(z, 2)

Translate the following statement into predicate logic.

UW has won against all football teams besides itself, and WSU has lost to all foootball teams besides
itself.



Solution:

Jx3y { UW(z) A Va( (Team(a) A (a # x)) — Lost(a,z)) A

WSU(y) A Vb( (Team(b) A (b # y)) — Lost(y, b))}

(d) Negate the following statement. Your final answer should have zero negations.

Warning: this statement makes absolutely no sense. Do NOT spend time thinking about its meaning.
We want you to blindly follow your equivalency laws here.

VaVy [(WSU(LE) A0SU(y)) A (—Lost(z,y) V —Lost(y, CE))]

Solution:

Students only need to write the final answer to receive full credit.
Ela:EIy[(WSU(J:) A0SU(y)) — (Lost(z,y) A Lost(y, m))]

The corresponding chain of equivalences is provided below for reference.

—MxVy[(WSU(x) A 0SU(y)) A (—Lost(z,y) V —Lost( y,:ﬁ))}
= —\Va:Vy[(WSU(x) A 0SU(y)) A —(Lost(z,y) A Lost(y, )} DeMorgans
= Iy [(wsu(x) A0SU(y)) A —(Lost(z,y) A Lost(y, )} DeMorgans for Quantifiers
= Jzy [ﬂ(WSU(x) A 0SU(y)) V = (Lost(z,y) A Lost(y, ))} DeMorgans
= Jzy [ﬁ (WSU(z) A 0SU(y)) V (Lost(z,y) A Lost(y, x))} Double Negation
= o3y [(wsu( ) AOSU(y)) — (Lost(x,y) A Lost(y, x))} Law of Implication



1. Normal Forms
Consider the following function F"

p q r | Fpgnr)
T T 7T F
T T F F
T F T T
T F F F
F T T T
F T F F
F F T F
F F F T

(a) Write a propositional logic expression for F' in DNF form (ORs of ANDs).

Solution:

(PA=gAT)V (pAgAT)V (mp Amg A=)
(b) Write a propositional logic expression for F' in CNF form (ANDs of ORs).

Solution:

(=pV =gV =r)A(=pV=gVr)A(—pVagVr)A(pV-ogVr)A@VagV-r)

2. Modular Arithmetic
Prove that for all integers x,y,n > 0, if x =¢,, 1 and y =7, 5 then 7z + 2y =14, 17.

Hint: Apply the definition of congruence and divides.

Solution:

Let x,y,n > 0 be arbitrary integers. Suppose = =g, 1 and y =7, 5. Then by definition of congruence,
6n | (x —1) and 7n | (y —5). Then by definition of divides, there exists integers j, k such that z — 1 = 6nk
and y —5="7nj. Thus x = 6nk + 1 and y = 7nj + 5. Then observe:

Tr+ 2y =T7(6nk+1)+2(Tnj +5)
=42nk + 7+ 14nj 4+ 10
= 42nk + 14nj + 17
= 14n(3k +j) + 17

Then (7x 4 2y) — 17 = 14n(3k + j). Since k, j are integers, 3k + j is an integer. So by definition of divides,
14n | (7 +2y) — 17. Then by definition of congruence, 7x + 2y =14, 17. Since x,y, n were arbitrary, the claim
holds.



3. Extended Euclidean Algorithm

Find all solutions in the range of 0 < x < 2021 to the modular equation:
311z =2021 3

Solution:

ged(2021, 311) = ged(311, 2021 mod 311) = ged (311, 155)
= gcd(155,311 mod 155) = ged(155,1)
=1

Then we know that there is a multiplicative inverse:

2021 =311 %6 4 155
311 =155%x2+1
155 =1* 155

From here, we can rearrange the equations to get:

155 = 2021 — 311 %6
1=311-155%2

From here, we use back substitution and plug these back into our equations:

1=2311—155%2
1=311— 2% (2021 — 311 6)
1=311—2%2021 + 12 % 311
1=13%311—2 %2021

So the multiplicative inverse is 13, i.e. 311 % 13 =9921 1. We can then multiply both sides of the original
modular equation by 13 to get 13 x 311x =2021 13 * 3. Simplifying gives us x =9921 39. By the definition of
congruence and division we have x = 39 + 2021k for k£ € N, but since we're only asked for solutions in the
range of 0 < z < 2021, = = 39.



4. Induction
Prove by induction that 3" — 1 is divisible by 2 for any integer n > 1.

Solution:
1. Let P(n) be the statement "3™ — 1 is divisible by 2". We prove P(n) for all integers n > 1 by induction.

2. Base Case: Whenn=1,3"—1=31—-1=3—-1=2. Since 2 | 2, the base case holds.

3. Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer & > 1. Then 2 | 3* — 1. Then by
definition of divides, there exists some integer a such that 3 — 1 = 2a.

4. Inductive Step: Observe that...

3kt 1 =3(3F) -1 Definition of Exponent
=303F-1+1) -1 Subtract and Add by 1
=32a+1)—-1 By IH
=6a+3—1 Algebra
= 6a + 2 Algebra
=2(3a+1) Algebra

Thus by definition of divides, 2 | 3**1 — 1. So P(k + 1) holds.

5. Thus we have proven P(n) for all integers n > 1 by induction.



5. Strong Induction

Consider the function f, which takes a natural number as input and outputs a natural number.

1 ifn=0
f(n) =142 ifn=1
fln=1)+2-f(n—2) ifn>2
Prove that f(n) = 2" for all n € N.

Solution:
Let P(n) be the claim that f(n) = 2". We will prove P(n) true for all n € N by strong induction.

= f(0)=1=1=2%so P(0) holds.

= f(1)=2=2=2"so P(1) holds.

Suppose that for some arbitrary integer k > 1, that P(j) holds for all j € N such that j < k.
Show P(k+ 1), i.e. f(k+1) =21

flk+1)=fk+1-1)+2- f(k+1-2) Definition of f
=fk)+2-f(k-1)
— ok 4 9.0kl I.H. twice
:2k+2k—1+1
=2k 4 2k
=2.9k
:2k‘+1

Clearly, P(k + 1) holds.
Therefore, we have proven the claim true by strong induction.



