Week 8 Workshop Solutions

Conceptual Review

(a) Set Definitions

Set Equality: $A = B := \forall x (x \in A \leftrightarrow x \in B)$ Subset: $A \subseteq B := \forall x (x \in A \rightarrow x \in B)$ Union: $A \cup B := \{x : x \in A \lor x \in B\}$ Intersection: $A \cap B := \{x : x \in A \land x \in B\}$ Set Difference: $A \setminus B = A - B := \{x : x \in A \land x \notin B\}$ Set Complement: $\overline{A} = A^C := \{x : x \notin A\}$ Powerset: $\mathcal{P}(A) := \{B : B \subseteq A\}$ Cartesian Product: $A \times B := \{(a, b) : a \in A, b \in B\}$

(b) How do we prove that for sets A and B, $A \subseteq B$?

Solution:

Let $x \in A$ be arbitrary... thus $x \in B$. Since x was arbitrary, $A \subseteq B$.

(c) How do we prove that for sets A and B, A = B?

Solution:

Use two subset proofs to show that $A \subseteq B$ and $B \subseteq A$.

1. A Basic Subset Proof

Prove that $A \cap B \subseteq A \cup B$.

Solution:

Let $x \in A \cap B$ be arbitrary. Then by definition of intersection, $x \in A$ and $x \in B$. So certainly $x \in A$ or $x \in B$. Then by definition of union, $x \in A \cup B$.

2. Set Equality Proof

(a) Write an English proof to show that $A \cap (A \cup B) \subseteq A$ for any sets A, B.

Solution:

Let x be an arbitrary member of $A \cap (A \cup B)$. Then by definition of intersection, $x \in A$ and $x \in A \cup B$. So certainly, $x \in A$. Since x was arbitrary, $A \cap (A \cup B) \subseteq A$.

(b) Write an English proof to show that $A \subseteq A \cap (A \cup B)$ for any sets A, B.

Solution:

Let $y \in A$ be arbitrary. So certainly $y \in A$ or $y \in B$. Then by definition of union, $y \in A \cup B$. Since $y \in A$ and $y \in A \cup B$, by definition of intersection, $y \in A \cap (A \cup B)$. Since y was arbitrary, $A \subseteq A \cap (A \cup B)$.

(c) Combine part (a) and (b) to conclude that $A \cap (A \cup B) = A$ for any sets A, B.

Solution:

Since $A \cap (A \cup B) \subseteq A$ and $A \subseteq A \cap (A \cup B)$, we can deduce that $A \cap (A \cup B) = A$.

3. Subsets

Prove or disprove: for any sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. **Solution:**

Let A, B, C be sets, and suppose $A \subseteq B$ and $B \subseteq C$. Let x be an arbitrary element of A. Then, by definition of subset, $x \in B$, and by definition of subset again, $x \in C$. Since x was an arbitrary element of A, we see that all elements of A are in C, so by definition of subset, $A \subseteq C$. So, for any sets A, B, C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

4. ∪ → ∩**?**

Prove or disprove: for all sets A and B, $A \cup B \subseteq A \cap B$.

Solution:

We wish to disprove this claim via a counterexample. Choose $A = \{1\}$, $B = \emptyset$. Note that $A \cup B = \{1\} \cup \emptyset = \{1\}$ by definition of set union. Note that $A \cap B = \{1\} \cap \emptyset = \emptyset$ by definition of set intersection. $\{1\} \not\subseteq \emptyset$, so the claim does not hold for these sets. Since we found a counterexample to the claim, we have shown that it is not the case that $A \cup B \not\subseteq A \cap B$ for all sets A and B.

5. Set Equality Proof II

We want to prove that $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

(a) First prove this with a chain of logical equivalences proof.

Solution:

Let x be arbitrary. Observe:

$$\begin{array}{ll} A \setminus (B \cap C) \equiv (x \in A) \land (x \notin B \cap C) & \text{Def of Set Difference} \\ \equiv (x \in A) \land \neg (x \in B \cap C) & \text{Def of element} \\ \equiv (x \in A) \land \neg ((x \in B) \land (x \in C)) & \text{Def of Intersection} \\ \equiv (x \in A) \land (\neg (x \in B) \lor \neg (x \in C)) & \text{DeMorgan's Law} \\ \equiv (x \in A) \land ((x \notin B) \lor (x \notin C)) & \text{Def of element} \\ \equiv ((x \in A) \land (x \notin B)) \lor ((x \in A) \land (x \notin C)) & \text{Distributivity} \\ \equiv (x \in A \setminus B) \lor (x \in A \setminus C) & \text{Def of Set Difference} \\ \equiv x \in (A \setminus B) \cup (A \setminus C) & \text{Def of Set Difference} \\ \end{array}$$

(b) Now prove this with an English proof that is made of two subset proofs.

Solution as arbitrary, we have shown $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Let $x \in A \setminus (B \cap C)$ be arbitrary. Then by definition of set difference, $x \in A$ and $x \notin B \cap C$. Then by definition of intersection, $x \notin B$ or $x \notin C$. Thus (by distributive property of propositions) we have $x \in A$ and $x \notin B$, or $x \in A$ and $x \notin C$. Then by definition of set difference, $x \in (A \setminus B)$ or $x \in (A \setminus C)$. Then by definition of union, $x \in (A \setminus B) \cup (A \setminus C)$. Since x was arbitrary, we have shown $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$.

Let $x \in (A \setminus B) \cup (A \setminus C)$ be arbitrary. Then by definition of union, $x \in (A \setminus B)$ or $x \in (A \setminus C)$. Then by definition of set difference, $x \in A$ and $x \notin B$, or $x \in A$ and $x \notin C$. Then (by distributive property of propositions) $x \in A$, and $x \notin B$ or $x \notin C$. Then by definition of intersection, $x \in A$ and $x \notin (B \cap C)$. Then by definition of set difference, $x \in A \setminus (B \cap C)$. Since x was arbitrary, we have shown that $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C)$.

Since $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$ and $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C)$, we have shown $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

6. Cartesian Product Proof

Complete this English proof to show that $A \times C \subseteq (A \cup B) \times (C \cup D)$.

Let $x \in \underline{\qquad} \times \underline{\qquad}$ be arbitrary.

Then x is of the form x = (y, z), where $y \in \underline{\qquad}$ and $z \in \underline{\qquad}$.

Then certainly $y \in \underline{\qquad}$ or $y \in \underline{\qquad}$.

Then by definition of _____, $y \in (_____)$. (Hint: operator, set operator set)

Similarly, since $z \in \underline{\qquad}$, certainly $z \in \underline{\qquad}$ or $z \in \underline{\qquad}$.

Then by definition of _____, $z \in (_____)$.

Since x = (y, z), then $x \in (____) \times (____)$.

Since x was _____, we have shown ____ \times ___ \subseteq (____ _ _) \times (____ _ _).

Solution:

Let $x \in A \times C$ be arbitrary. Then x is of the form x = (y, z), where $y \in A$ and $z \in C$. Then certainly $y \in A$ or $y \in B$. Then by definition of union, $y \in (A \cup B)$. Similarly, since $z \in C$, certainly $z \in C$ or $z \in D$. Then by definition, $z \in (C \cup D)$. Since x = (y, z), then $x \in (A \cup B) \times (C \cup D)$. Since x was arbitrary, we have shown $A \times C \subseteq (A \cup B) \times (C \cup D)$.

7. Structural Induction: Divisible by 4

Define a set \mathfrak{B} of numbers by:

- 4 and 12 are in ${\mathfrak B}$
- If $x \in \mathfrak{B}$ and $y \in \mathfrak{B}$, then $x + y \in \mathfrak{B}$ and $x y \in \mathfrak{B}$

Prove by induction that every number in \mathfrak{B} is divisible by 4. Complete the proof below:

Solution:

Let P(b) be the claim that 4 | b. We will prove P(b) is true for all numbers $b \in \mathfrak{B}$ by structural induction. Base Case:

- $4 \mid 4$ is trivially true, so P(4) holds.
- $12 = 3 \cdot 4$, so $4 \mid 12$ and P(12) holds.

Inductive Hypothesis: Suppose P(x) and P(y) for some arbitrary $x, y \in \mathfrak{B}$. Inductive Step:

Goal: Prove P(x+y) and P(x-y)

Per the IH, $4 \mid x$ and $4 \mid y$. By the definition of divides, x = 4k and y = 4j for some integers k, j.

Case 1: Goal: Show P(x + y)x + y = 4k + 4j = 4(k + j). Since integers are closed under addition, k + j is an integer, so $4 \mid x + y$ and P(x + y) holds.

Case 2: Goal: Show P(x - y)Similarly, $x - y = 4k - 4j = 4(k - j) = 4(k + (-1 \cdot j))$. Since integers are closed under addition and multiplication, and -1 is an integer, we see that k - j must be an integer. Therefore, by the definition of divides, $4 \mid x - y$ and P(x - y) holds.

So, P(t) holds in both cases. Conclusion: Therefore, P(b) holds for all numbers $b \in \mathfrak{B}$.

8. Structural Induction: Dictionaries

Recursive definition of a Dictionary (i.e. a Map):

- Basis Case: [] is the empty dictionary
- Recursive Case: If D is a dictionary, and a and b are elements of the universe, then (a → b) :: D is a dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

 $\begin{aligned} \mathsf{AllKeys}([]) &= [] & \mathsf{len}([]) &= 0\\ \mathsf{AllKeys}((a \to b) :: \mathsf{D}) &= a :: \mathsf{AllKeys}(\mathsf{D}) & \mathsf{len}((a \to b) :: \mathsf{D}) &= 1 + \mathsf{len}(\mathsf{D}) \end{aligned}$

Recursive functions on Sets:

```
len([]) = 0len(a :: C) = 1 + len(C)
```

Statement to prove:

Prove that len(D) = len(AllKeys(D)).

Solution:

Proof. Define P(D) to be len(D) = len(AllKeys(D)) for a Dictionary D. We will go by structural induction to show P(D) for all dictionaries D. Base Case: D = []: Note that:

$$len(D) = len([])$$

= len(AllKeys([]))
= len(AllKeys(D))

[Definition of AllKeys]

Inductive Hypothesis: Suppose P(C) to be true for an arbitrary dictionary C. **Inductive Step:**

Let $D' = (a \rightarrow b) :: C$. Note that:

$$\begin{split} \mathsf{len}((a \to b) :: \mathsf{C}) &= 1 + \mathsf{len}(\mathsf{C}) & [\mathsf{Definition of Len}] \\ &= 1 + \mathsf{len}(\mathsf{AllKeys}(\mathsf{C})) & [\mathsf{IH}] \\ &= \mathsf{len}(a :: \mathsf{AllKeys}(\mathsf{C})) & [\mathsf{Definition of Len}] \\ &= \mathsf{len}(\mathsf{AllKeys}((a \to b) :: \mathsf{C})) & [\mathsf{Definition of AllKeys}] \end{split}$$

So P(D') holds.

Conclusion: Thus, the claim holds for all dictionaries D by structural induction.

Bonus. Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are **CharTrees** and $c \in \Sigma$, then CharTree(L, c, R) is also a **CharTree**

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

The preorder function returns the preorder traversal of all elements in a CharTree.

 $\begin{array}{ll} {\tt preorder(Null)} & = \varepsilon \\ {\tt preorder(CharTree}(L,c,R)) & = c \cdot {\tt preorder}(L) \cdot {\tt preorder}(R) \end{array}$

The postorder function returns the postorder traversal of all elements in a CharTree.

 $\begin{array}{ll} \mathsf{postorder}(\mathtt{Null}) & = \varepsilon \\ \mathsf{postorder}(\mathtt{CharTree}(L,c,R)) & = \mathsf{postorder}(L) \cdot \mathsf{postorder}(R) \cdot c \end{array}$

• The mirror function produces the mirror image of a **CharTree**.

 $\begin{array}{ll} \mathsf{mirror}(\mathtt{Null}) &= \mathtt{Null} \\ \mathsf{mirror}(\mathtt{CharTree}(L,c,R)) &= \mathtt{CharTree}(\mathsf{mirror}(R),c,\mathsf{mirror}(L)) \\ \end{array}$

• Finally, for all strings x, let the "reversal" of x (in symbols x^R) produce the string in reverse order.

Additional Facts:

You may use the following facts:

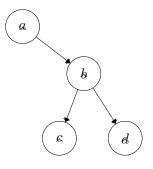
- For any strings $x_1, ..., x_k$: $(x_1 \cdot ... \cdot x_k)^R = x_k^R \cdot ... \cdot x_1^R$
- For any character c, $c^R = c$

Statement to Prove:

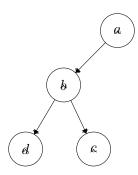
Show that for every **CharTree** T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every **CharTree**, T: $[preorder(T)]^R = postorder(mirror(T))$.

There is an example and space to work on the next page.

Example for Intuition:



Let T_i be the tree above. preorder $(T_i) =$ "abcd". T_i is built as (null, a, U) Where U is (V, b, W), V = (null, c, null), W = (null, d, null).



This tree is mirror (T_i) . postorder(mirror (T_i)) ="dcba", "dcba" is the reversal of "abcd" so [preorder (T_i)]^R = postorder(mirror (T_i)) holds for T_i

Solution:

Let P(T) be " $[preorder(T)]^R = postorder(mirror(T))$ ". We show P(T) holds for all **CharTrees** T by structural induction.

Base case (T = Null): preorder(T)^R = $\varepsilon^{R} = \varepsilon$ = postorder(Null) = postorder(mirror(Null)), so P(Null) holds.

Inductive hypothesis: Suppose $P(L) \wedge P(R)$ for arbitrary CharTrees L, R.

Inductive step:

We want to show P(CharTree(L, c, R)), i.e. $[\text{preorder}(\text{CharTree}(L, c, R))]^R = \text{postorder}(\text{mirror}(\text{CharTree}(L, c, R)))$.

Let c be an arbitrary element in Σ , and let T = CharTree(L, c, R)

$$\begin{array}{ll} \operatorname{preorder}(T)^R = [c \cdot \operatorname{preorder}(L) \cdot \operatorname{preorder}(R)]^R & \operatorname{defn} \text{ of } \operatorname{preorder}\\ = \operatorname{preorder}(R)^R \cdot \operatorname{preorder}(L)^R \cdot c^R & \operatorname{Fact} 1\\ = \operatorname{preorder}(R)^R \cdot \operatorname{preorder}(L)^R \cdot c & \operatorname{Fact} 2\\ = \operatorname{postorder}(\operatorname{mirror}(R)) \cdot \operatorname{postorder}(\operatorname{mirror}(L)) \cdot c & \operatorname{by} 1.H.\\ = \operatorname{postorder}(\operatorname{CharTree}(\operatorname{mirror}(R), c, \operatorname{mirror}(L)) & \operatorname{recursive} \operatorname{defn} \operatorname{of} \operatorname{postorder}\\ = \operatorname{postorder}(\operatorname{mirror}(\operatorname{CharTree}(L, c, R))) & \operatorname{recursive} \operatorname{defn} \operatorname{of} \operatorname{mirror}\\ = \operatorname{postorder}(\operatorname{mirror}(T)) & \operatorname{defn} \operatorname{of} T \end{array}$$

So P(CharTree(L, c, R)) holds.

By the principle of induction, P(T) holds for all **CharTrees** T.