CSE 390Z: Mathematics for Computation Workshop
Week 8 Workshop Solutions

Conceptual Review
(a) Set Definitions

Set Equality: A= B :=Vz(x € A+ z € B)

Subset: AC B:=Vz(x € A -z € B)

Union: AUB:={z : € AVz € B}

Intersection: ANB:={z : t€ ANz € B}

Set Difference: A\B=A—-B:={z : vt € ANz ¢ B}
Set Complement: A = AY :={z : z ¢ A}

Powerset: P(A) :={B : B C A}

Cartesian Product: A x B:={(a,b) :a € A, be B}

(b) How do we prove that for sets A and B, A C B?

Solution:

Let z € A be arbitrary... thus x € B. Since x was arbitrary, A C B.
(c) How do we prove that for sets A and B, A = B?

Solution:

Use two subset proofs to show that A C B and B C A.

1. A Basic Subset Proof
Prove that AN B C AU B.

Solution:

Let z € AN B be arbitrary. Then by definition of intersection, x € A and x € B. So certainly x € Aorx € B.
Then by definition of union, x € AU B.



2. Set Equality Proof

(a)

Write an English proof to show that AN (AU B) C A for any sets A, B.

Solution:

Let = be an arbitrary member of AN (AU B). Then by definition of intersection, x € A and z € AU B.
So certainly, z € A. Since = was arbitrary, AN (AU B) C A.

(b) Write an English proof to show that A C AN (AU B) for any sets A, B.

Solution:

Let y € A be arbitrary. So certainly y € A or y € B. Then by definition of union, y € AUB. Sincey € A
and y € AU B, by definition of intersection, y € AN (AU B). Since y was arbitrary, A C AN (AU B).

Combine part (a) and (b) to conclude that AN (AU B) = A for any sets A, B.

Solution:
Since AN(AUB) C Aand AC AN (AU B), we can deduce that AN (AU B) = A.



3. Subsets

Prove or disprove: for any sets A, B, and C,if AC B and B C C, then A C C.

Solution:

Let A, B, C be sets, and suppose A C B and B C C. Let x be an arbitrary element of A. Then, by definition
of subset, x € B, and by definition of subset again, x € C. Since x was an arbitrary element of A, we see that
all elements of A are in C, so by definition of subset, A C C. So, for any sets A, B, C,if AC B and B C C,
then A C C.

4. U —nN7?
Prove or disprove: for all sets A and B, AUB C ANB.
Solution:

We wish to disprove this claim via a counterexample. Choose A = {1}, B = @. Note that AUB = {1} U@ =
{1} by definition of set union. Note that AN B = {1} N @ = & by definition of set intersection. {1} Z &, so
the claim does not hold for these sets. Since we found a counterexample to the claim, we have shown that it
is not the case that AU B € AN B for all sets A and B.



5. Set Equality Proof Il
We want to prove that A\ (BNC)=(A\ B)U(A\ ().
(a) First prove this with a chain of logical equivalences proof.

Solution:

Let = be arbitrary. Observe:

A\(BNC)=(xzecAN(xg¢BnNO) Def of Set Difference
=(xeAAN-(xeBNC) Def of element
=(xecAAN(zeB)AN(xel)) Def of Intersection
=(x€eA)AN(~(reB)VvV(rel)) DeMorgan's Law
=xecAN((x¢gB)V(zgC)) Def of element
=((zeAAN(xEB)V((xeAAN(xgl)) Distributivity
=(xeA\B)V(zre A\Q) Def of Set Difference

x€(A\B)U(A\C) Def of Union
(b) Now prove this with an English proof that is made of two subset proofs.

Siabiationas arbitrary, we have shown A\ (BNC) = (A\ B)U(A\C).

Let x € A\ (BNC) be arbitrary. Then by definition of set difference, x € A and = ¢ BNC. Then by defi-
nition of intersection, ¢ B or x ¢ C. Thus (by distributive property of propositions) we have x € A and
x ¢ B,orz € Aand z ¢ C. Then by definition of set difference, z € (A\B) or x € (A\C'). Then by def-
inition of union, z € (A\B)U(A\C). Since = was arbitrary, we have shown A\ (BNC) C (A\B)U(A\C).

Let x € (A\ B) U (A\ C) be arbitrary. Then by definition of union, z € (A\ B) or z € (A \ C).
Then by definition of set difference, x € A and x ¢ B, or x € A and x ¢ C. Then (by distributive
property of propositions) x € A, and x ¢ B or x ¢ C. Then by definition of intersection, z € A and
x ¢ (BNC). Then by definition of set difference, x € A\ (BNC). Since = was arbitrary, we have shown
that (A\ B)U(A\C) C A\ (BnNCQO).

Since A\ (BNC) C (A\B)U(A\C) and (A\B)U(A\C) C A\ (BNC), we have shown
A\ (BNC)=(A\B)U(A\C).

6. Cartesian Product Proof

Complete this English proof to show that A x C' C (AU B) x (CU D).

Letz€__ x__ be arbitrary.

Then z is of the form = = (y,z), wherey € ____and z€ ____.

Then certainlyye ____orye____.

Then by definition of VRSN _ ). (Hint: operator, set operator set)
Similarly, since z € ____, certainlyz€e ____orze ____.

Then by definition of 2 € ( _ ).

Since = = (y, z), then z € ( _ ) x ( _ ).

Since x was , we have shown X C( _ ) < ( _ )




Solution:

Let z € A x C be arbitrary. Then z is of the form = = (y, z), where y € A and z € C. Then certainly y € A
or y € B. Then by definition of union, y € (AU B). Similarly, since z € C, certainly z € C or z € D. Then by
definition, z € (C'U D). Since z = (y, z), then x € (AU B) x (C'U D). Since = was arbitrary, we have shown
AxCC(AUB) x (CUD).

7. Structural Induction: Divisible by 4
Define a set B of numbers by:
» 4and 12 are in B

s fzeBandyecB, thenz+yecBandz—yecB

Prove by induction that every number in B is divisible by 4.
Complete the proof below:

Solution:

Let P(b) be the claim that 4 | b. We will prove P(b) is true for all numbers b € 96 by structural induction.
Base Case:

= 4|4 is trivially true, so P(4) holds.
» 12=3-4,s04 |12 and P(12) holds.

Inductive Hypothesis: Suppose P(z) and P(y) for some arbitrary x,y € B.
Inductive Step:

‘ Goal: Prove P(x+y) and P(xz—1y) ‘

Per the IH, 4 | z and 4 | y. By the definition of divides, z = 4k and y = 4; for some integers k, j.

Case 1: Goal: Show P(z +y)
x+y =4k + 45 = 4(k + 7). Since integers are closed under addition, k + j is an integer, so 4 | z + y and
P(x + y) holds.

Case 2: Goal: Show P(z —y)
Similarly, z —y = 4k — 45 = 4(k — j) = 4(k+ (—=1-j)). Since integers are closed under addition and multi-
plication, and —1 is an integer, we see that k — j must be an integer. Therefore, by the definition of divides,
4|z —y and P(z —y) holds.

So, P(t) holds in both cases.
Conclusion: Therefore, P(b) holds for all numbers b € 8.



8. Structural Induction: Dictionaries
Recursive definition of a Dictionary (i.e. a Map):

» Basis Case: [] is the empty dictionary

= Recursive Case: If D is a dictionary, and a and b are elements of the universe, then (a — b) :: D is a
dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

AllKeys([1) =[] len([]) =0
AllKeys((a — b) :: D) = a :: AllKeys(D) len((a — ) :: D) =1+len(D)

Recursive functions on Sets:

len([1) =0
len(a:: C) =1+41len(C)

Statement to prove:
Prove that len(D) = len(AllKeys(D)).

Solution:

Proof. Define P(D) to be len(D) = len(AllKeys(D)) for a Dictionary D. We will go by structural induction to
show P(D) for all dictionaries D.
Base Case: D = []: Note that:

len(D) = len([1)
= len(AllKeys([1)) [Definition of AllKeys]
= len(AllKeys(D))

Inductive Hypothesis: Suppose P(C) to be true for an arbitrary dictionary C.
Inductive Step:
Let D' = (a — b) :: C. Note that:

len((a — b) :: C) =1+ len(C) [Definition of Len]
=1+ len(AllKeys(C)) [IH]
= len(a :: AllKeys(C)) [Definition of Len]
= len(AllKeys((a — b) :: C)) [Definition of AllKeys]

So P(D’") holds.
Conclusion: Thus, the claim holds for all dictionaries D by structural induction. O



Bonus. Structural Induction: CharTrees
Recursive Definition of CharTrees:

» Basis Step: Null is a CharTree
= Recursive Step: If L, R are CharTrees and ¢ € ¥, then CharTree(L, ¢, R) is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

The preorder function returns the preorder traversal of all elements in a CharTree.

preorder(Null) =c
preorder(CharTree(L,c, R)) = c- preorder(L) - preorder(R)

The postorder function returns the postorder traversal of all elements in a CharTree.

postorder(Null) =¢
postorder(CharTree(L,c, R)) = postorder(L) - postorder(R) - ¢

The mirror function produces the mirror image of a CharTree.

mirror(Null) = Null
mirror(CharTree(L,c, R)) = CharTree(mirror(R),c, mirror(L))

Finally, for all strings z, let the “reversal” of z (in symbols *) produce the string in reverse order.

Additional Facts:
You may use the following facts:

= For any strings z1, ..., 73 (21 - ... - 23)F = ka szl

R:

= For any character ¢, ¢ c

Statement to Prove:
Show that for every CharTree T, the reversal of the preorder traversal of T' is the same as the postorder
traversal of the mirror of 7. In notation, you should prove that for every CharTree, T: [preorder(T)]% =
postorder(mirror(T)).

There is an example and space to work on the next page.



Example for Intuition:

Let T; be the tree above.

preorder(T;) ="abcd". This tree is mirror(7T;).

T; is built as (null,a,U) postorder(mirror(7;)) ="dcba",

Where U is (V,b, W), “dcba” is the reversal of “abcd” so

V = (null, ¢, null), W = (null, d,null). [preorder(T;)] ¥ = postorder(mirror(T;)) holds for T;
Solution:

Let P(T) be “[preorder(T)]" = postorder(mirror(T"))". We show P(T) holds for all CharTrees T by structural
induction.

Base case (7' = Null): preorder(T)f* = £f! = ¢ = postorder(Null) = postorder(mirror(Null)), so P(Null)
holds.

Inductive hypothesis: Suppose P(L) A P(R) for arbitrary CharTrees L, R.

Inductive step:

We want to show P(CharTree(L, ¢, R)),

i.e. [preorder(CharTree(L,c, R))]® = postorder(mirror(CharTree(L,c, R))).

Let ¢ be an arbitrary element in X, and let T' = CharTree(L, ¢, R)

preorder(T)f* = [c - preorder(L) - preorder(R)]* defn of preorder
— preorder(R) - preorder(L)% - ¢t Fact 1
— preorder(R)* - preorder(L)* - ¢ Fact 2
= postorder(mirror(R)) - postorder(mirror(L)) - ¢ by I.H.
= postorder(CharTree(mirror(R), ¢, mirror(L)) recursive defn of postorder
= postorder(mirror(CharTree(L, ¢, R))) recursive defn of mirror
= postorder(mirror(T")) defn of T

So P(CharTree(L, ¢, R)) holds.
By the principle of induction, P(T') holds for all CharTrees T



