
CSE 390Z: Mathematics for Computation Workshop
Week 8 Workshop Solutions

Conceptual Review
(a) Set Definitions

Set Equality: A = B := ∀x(x ∈ A ↔ x ∈ B)
Subset: A ⊆ B := ∀x(x ∈ A → x ∈ B)
Union: A ∪B := {x : x ∈ A ∨ x ∈ B}
Intersection: A ∩B := {x : x ∈ A ∧ x ∈ B}
Set Difference: A \B = A−B := {x : x ∈ A ∧ x /∈ B}
Set Complement: A = AC := {x : x /∈ A}
Powerset: P(A) := {B : B ⊆ A}
Cartesian Product: A×B := {(a, b) : a ∈ A, b ∈ B}

(b) How do we prove that for sets A and B, A ⊆ B?

Solution:
Let x ∈ A be arbitrary... thus x ∈ B. Since x was arbitrary, A ⊆ B.

(c) How do we prove that for sets A and B, A = B?

Solution:
Use two subset proofs to show that A ⊆ B and B ⊆ A.

1. A Basic Subset Proof
Prove that A ∩B ⊆ A ∪B.

Solution:
Let x ∈ A∩B be arbitrary. Then by definition of intersection, x ∈ A and x ∈ B. So certainly x ∈ A or x ∈ B.
Then by definition of union, x ∈ A ∪B.
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2. Set Equality Proof
(a) Write an English proof to show that A ∩ (A ∪B) ⊆ A for any sets A,B.

Solution:
Let x be an arbitrary member of A ∩ (A ∪B). Then by definition of intersection, x ∈ A and x ∈ A ∪B.
So certainly, x ∈ A. Since x was arbitrary, A ∩ (A ∪B) ⊆ A.

(b) Write an English proof to show that A ⊆ A ∩ (A ∪B) for any sets A,B.

Solution:
Let y ∈ A be arbitrary. So certainly y ∈ A or y ∈ B. Then by definition of union, y ∈ A∪B. Since y ∈ A
and y ∈ A∪B, by definition of intersection, y ∈ A∩ (A∪B). Since y was arbitrary, A ⊆ A∩ (A∪B).

(c) Combine part (a) and (b) to conclude that A ∩ (A ∪B) = A for any sets A,B.

Solution:
Since A ∩ (A ∪B) ⊆ A and A ⊆ A ∩ (A ∪B), we can deduce that A ∩ (A ∪B) = A.

2



3. Subsets
Prove or disprove: for any sets A, B, and C, if A ⊆ B and B ⊆ C, then A ⊆ C.
Solution:
Let A, B, C be sets, and suppose A ⊆ B and B ⊆ C. Let x be an arbitrary element of A. Then, by definition
of subset, x ∈ B, and by definition of subset again, x ∈ C. Since x was an arbitrary element of A, we see that
all elements of A are in C, so by definition of subset, A ⊆ C. So, for any sets A, B, C, if A ⊆ B and B ⊆ C,
then A ⊆ C.

4. ∪ → ∩?
Prove or disprove: for all sets A and B, A ∪B ⊆ A ∩B.
Solution:
We wish to disprove this claim via a counterexample. Choose A = {1}, B = ∅. Note that A∪B = {1}∪∅ =
{1} by definition of set union. Note that A ∩B = {1} ∩∅ = ∅ by definition of set intersection. {1} 6⊆ ∅, so
the claim does not hold for these sets. Since we found a counterexample to the claim, we have shown that it
is not the case that A ∪B 6⊆ A ∩B for all sets A and B.
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5. Set Equality Proof II
We want to prove that A \ (B ∩ C) = (A \B) ∪ (A \ C).

(a) First prove this with a chain of logical equivalences proof.

Solution:
Let x be arbitrary. Observe:

A \ (B ∩ C) ≡ (x ∈ A) ∧ (x 6∈ B ∩ C) Def of Set Difference
≡ (x ∈ A) ∧ ¬(x ∈ B ∩ C) Def of element
≡ (x ∈ A) ∧ ¬((x ∈ B) ∧ (x ∈ C)) Def of Intersection
≡ (x ∈ A) ∧ (¬(x ∈ B) ∨ ¬(x ∈ C)) DeMorgan’s Law
≡ (x ∈ A) ∧ ((x 6∈ B) ∨ (x 6∈ C)) Def of element
≡ ((x ∈ A) ∧ (x 6∈ B)) ∨ ((x ∈ A) ∧ (x 6∈ C)) Distributivity
≡ (x ∈ A \B) ∨ (x ∈ A \ C) Def of Set Difference
≡ x ∈ (A \B) ∪ (A \ C) Def of Union

Since x was arbitrary, we have shown A \ (B ∩ C) = (A \B) ∪ (A \ C).

(b) Now prove this with an English proof that is made of two subset proofs.

Solution:
Let x ∈ A\(B∩C) be arbitrary. Then by definition of set difference, x ∈ A and x /∈ B∩C. Then by defi-
nition of intersection, x /∈ B or x /∈ C. Thus (by distributive property of propositions) we have x ∈ A and
x /∈ B, or x ∈ A and x /∈ C. Then by definition of set difference, x ∈ (A\B) or x ∈ (A\C). Then by def-
inition of union, x ∈ (A\B)∪(A\C). Since x was arbitrary, we have shown A\(B∩C) ⊆ (A\B)∪(A\C).

Let x ∈ (A \ B) ∪ (A \ C) be arbitrary. Then by definition of union, x ∈ (A \ B) or x ∈ (A \ C).
Then by definition of set difference, x ∈ A and x /∈ B, or x ∈ A and x /∈ C. Then (by distributive
property of propositions) x ∈ A, and x /∈ B or x /∈ C. Then by definition of intersection, x ∈ A and
x /∈ (B ∩C). Then by definition of set difference, x ∈ A \ (B ∩C). Since x was arbitrary, we have shown
that (A \B) ∪ (A \ C) ⊆ A \ (B ∩ C).

Since A \ (B ∩ C) ⊆ (A \ B) ∪ (A \ C) and (A \ B) ∪ (A \ C) ⊆ A \ (B ∩ C), we have shown
A \ (B ∩ C) = (A \B) ∪ (A \ C).

6. Cartesian Product Proof
Complete this English proof to show that A× C ⊆ (A ∪B)× (C ∪D).

Let x ∈ ___ × ___ be arbitrary.

Then x is of the form x = (y, z), where y ∈ ___ and z ∈ ___.

Then certainly y ∈ ___ or y ∈ ___.

Then by definition of _______, y ∈ (___ _ ___). (Hint: operator, set operator set)

Similarly, since z ∈ ___, certainly z ∈ ___ or z ∈ ___.

Then by definition of _______, z ∈ (___ _ ___).

Since x = (y, z), then x ∈ (___ _ ___)× (___ _ ___).

Since x was _______, we have shown ___ × ___ ⊆ (___ _ ___)× (___ _ ___).
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Solution:
Let x ∈ A× C be arbitrary. Then x is of the form x = (y, z), where y ∈ A and z ∈ C. Then certainly y ∈ A
or y ∈ B. Then by definition of union, y ∈ (A∪B). Similarly, since z ∈ C, certainly z ∈ C or z ∈ D. Then by
definition, z ∈ (C ∪D). Since x = (y, z), then x ∈ (A ∪B)× (C ∪D). Since x was arbitrary, we have shown
A× C ⊆ (A ∪B)× (C ∪D).

7. Structural Induction: Divisible by 4
Define a set B of numbers by:

• 4 and 12 are in B

• If x ∈ B and y ∈ B, then x+ y ∈ B and x− y ∈ B

Prove by induction that every number in B is divisible by 4.
Complete the proof below:

Solution:

Let P (b) be the claim that 4 | b. We will prove P (b) is true for all numbers b ∈ B by structural induction.
Base Case:

• 4 | 4 is trivially true, so P (4) holds.

• 12 = 3 · 4, so 4 | 12 and P (12) holds.

Inductive Hypothesis: Suppose P (x) and P (y) for some arbitrary x, y ∈ B.
Inductive Step:

Goal: Prove P (x+y) and P (x−y)

Per the IH, 4 | x and 4 | y. By the definition of divides, x = 4k and y = 4j for some integers k, j.

Case 1: Goal: Show P (x+ y)
x + y = 4k + 4j = 4(k + j). Since integers are closed under addition, k + j is an integer, so 4 | x + y and
P (x+ y) holds.

Case 2: Goal: Show P (x− y)
Similarly, x − y = 4k − 4j = 4(k − j) = 4(k + (−1 · j)). Since integers are closed under addition and multi-
plication, and −1 is an integer, we see that k − j must be an integer. Therefore, by the definition of divides,
4 | x− y and P (x− y) holds.

So, P (t) holds in both cases.
Conclusion: Therefore, P (b) holds for all numbers b ∈ B.
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8. Structural Induction: Dictionaries
Recursive definition of a Dictionary (i.e. a Map):

• Basis Case: [] is the empty dictionary

• Recursive Case: If D is a dictionary, and a and b are elements of the universe, then (a → b) :: D is a
dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

AllKeys([]) = [] len([]) = 0

AllKeys((a → b) :: D) = a :: AllKeys(D) len((a → b) :: D) = 1 + len(D)

Recursive functions on Sets:

len([]) = 0

len(a :: C) = 1 + len(C)

Statement to prove:
Prove that len(D) = len(AllKeys(D)).

Solution:
Proof. Define P(D) to be len(D) = len(AllKeys(D)) for a Dictionary D. We will go by structural induction to
show P(D) for all dictionaries D.
Base Case: D = []: Note that:

len(D) = len([])

= len(AllKeys([])) [Definition of AllKeys]
= len(AllKeys(D))

Inductive Hypothesis: Suppose P(C) to be true for an arbitrary dictionary C.
Inductive Step:
Let D’ = (a → b) :: C. Note that:

len((a → b) :: C) = 1 + len(C) [Definition of Len]
= 1 + len(AllKeys(C)) [IH]
= len(a :: AllKeys(C)) [Definition of Len]
= len(AllKeys((a → b) :: C)) [Definition of AllKeys]

So P(D’) holds.
Conclusion: Thus, the claim holds for all dictionaries D by structural induction.
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Bonus. Structural Induction: CharTrees
Recursive Definition of CharTrees:

• Basis Step: Null is a CharTree

• Recursive Step: If L,R are CharTrees and c ∈ Σ, then CharTree(L, c,R) is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

• The preorder function returns the preorder traversal of all elements in a CharTree.

preorder(Null) = ε

preorder(CharTree(L, c,R)) = c · preorder(L) · preorder(R)

• The postorder function returns the postorder traversal of all elements in a CharTree.

postorder(Null) = ε

postorder(CharTree(L, c,R)) = postorder(L) · postorder(R) · c

• The mirror function produces the mirror image of a CharTree.

mirror(Null) = Null

mirror(CharTree(L, c,R)) = CharTree(mirror(R), c,mirror(L))

• Finally, for all strings x, let the “reversal” of x (in symbols xR) produce the string in reverse order.

Additional Facts:
You may use the following facts:

• For any strings x1, ..., xk: (x1 · ... · xk)R = xRk · ... · xR1

• For any character c, cR = c

Statement to Prove:
Show that for every CharTree T , the reversal of the preorder traversal of T is the same as the postorder
traversal of the mirror of T . In notation, you should prove that for every CharTree, T : [preorder(T )]R =
postorder(mirror(T )).

There is an example and space to work on the next page.
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Example for Intuition:

a

b

c d

Let Ti be the tree above.
preorder(Ti) =“abcd”.
Ti is built as (null, a, U)
Where U is (V, b,W ),
V = (null, c, null),W = (null, d, null).

a

b

cd

This tree is mirror(Ti).
postorder(mirror(Ti)) =“dcba”,
“dcba” is the reversal of “abcd” so
[preorder(Ti)]

R = postorder(mirror(Ti)) holds for Ti

Solution:
Let P (T ) be “[preorder(T )]R = postorder(mirror(T ))”. We show P (T ) holds for all CharTrees T by structural
induction.
Base case (T = Null): preorder(T )R = εR = ε = postorder(Null) = postorder(mirror(Null)), so P (Null)
holds.
Inductive hypothesis: Suppose P (L) ∧ P (R) for arbitrary CharTrees L,R.
Inductive step:
We want to show P (CharTree(L, c,R)),
i.e. [preorder(CharTree(L, c,R))]R = postorder(mirror(CharTree(L, c,R))).

Let c be an arbitrary element in Σ, and let T = CharTree(L, c,R)

preorder(T )R = [c · preorder(L) · preorder(R)]R defn of preorder
= preorder(R)R · preorder(L)R · cR Fact 1
= preorder(R)R · preorder(L)R · c Fact 2
= postorder(mirror(R)) · postorder(mirror(L)) · c by I.H.
= postorder(CharTree(mirror(R), c,mirror(L)) recursive defn of postorder
= postorder(mirror(CharTree(L, c,R))) recursive defn of mirror
= postorder(mirror(T )) defn of T

So P (CharTree(L, c,R)) holds.
By the principle of induction, P (T ) holds for all CharTrees T .
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