
CSE 390Z: Mathematics for Computation Workshop
Week 6 Workshop Solutions

0. Induction: Warm-Up
Prove by induction that 5 | (6n − 1) for all n ∈ N.
Solution:
Let P (n) be “5 | 6n − 1” for all n ∈ N. We will show P (n) for all n by induction.

Base Case (n = 0). 60 − 1 = 1− 1 = 0 = 0 · 5, so 5 | 60 − 1.

Induction Hypothesis. Assume P (k) holds for some arbitrary integer k ≥ 0.

Induction Step. Goal: We aim to show P (k + 1), i.e. that 5 | (6k+1 − 1).

By the Inductive Hypothesis, we have that 5 | (6k − 1). Then by definition of divides, 6k − 1 = 5j for
some j ∈ Z. Observe:

6k − 1 = 5j

6k+1 − 6 = 30j

6k+1 − 1 = 30j + 5

6k+1 − 1 = 5(6j + 1)

Since j is an integer, j + 1 is an integer. They by definition of divides, we have that 5 | (6k+1 − 1), as
desired. So P(k + 1) holds.

Conclusion. P(n) is true for all n ∈ N by induction.

1. Induction: Equality
Prove by induction that for every n ∈ N, the following equality is true:

0 · 20 + 1 · 21 + 2 · 22 + · · ·+ n · 2n = (n− 1)2n+1 + 2.
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Solution:
Let P (n) be “0 · 20 + 1 · 21 + 2 · 22 + · · · + n · 2n = (n − 1)2n+1 + 2”. We will prove P (n) for all n ∈ N by
induction.

Base Case. 0 · 20 = 0 and (0− 1)20+1 + 2 = −2 + 2 = 0, so P (0) is true.

Induction Hypothesis. Assume that P (k) holds true for some arbitrary integer k ≥ 0.

Induction Step We show P (k + 1):

0 · 20 + 1 · 21 + 2 · 22 + · · ·+ (k + 1) · 2k+1

= 0 · 20 + 1 · 21 + 2 · 22 + · · ·+ k · 2k + (k + 1) · 2k+1 [Show another term inside “...”]
= (k − 1)2k+1 + 2 + (k + 1)2k+1 [Induction Hypothesis]
= ((k − 1) + (k + 1))2k+1 + 2 [Group multiples of 2k+1]
= (2k)2k+1 + 2 [Algebra]
= k2k+2 + 2 [Algebra].

Therefore P (k + 1) holds.

Conclusion. P (n) holds for all n ∈ N by induction.
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2. Induction: Inequality
Prove by induction on n that for all integers n ≥ 0 the inequality (3 + π)n ≥ 3n + nπ3n−1 is true.
Solution:
Let P (n) be "(3 + π)n ≥ 3n + nπ3n−1". We will prove P (n) is true for all n ∈ N, by induction.

Base Case: (n = 0): (3 + π)0 = 1 and 30 + 0 · π · 3−1 = 1, since 1 ≥ 1, P (0) is true.

Inductive Hypothesis: Suppose that P (k) is true for some arbitrary integer k ∈ N.

Inductive Step:

Goal: Show P (k+1), i.e. show (3+π)k+1 ≥ 3k+1+(k+1)π3(k+1)−1 = 3k+1+(k+1)π3k

(3 + π)k+1 = (3 + π)k · (3 + π) (Factor out (3 + π))
≥ (3k + k3k−1π) · (3 + π) (By I.H., (3 + π) ≥ 0)
= 3 · 3k + 3kπ + 3k3k−1π + k3k−1π2 (Distributive property)
= 3k+1 + 3kπ + k3kπ + k3k−1π2 (Simplify)
= 3k+1 + (k + 1)3kπ + k3k−1π2 (Factor out (k + 1))
≥ 3k+1 + (k + 1)π3k (k3k−1π2 ≥ 0)

Conclusion: So by induction, P (n) is true for all n ∈ N.

3. Inductively Odd
An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and
needs your help proving that it is correct.

1 public static boolean oddr(int n) {
2 if (n == 0)
3 return False;
4 else
5 return !oddr(n−1);
6 }
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Help the student by writing an inductive proof to prove that for all integers n ≥ 0, the method oddr returns
True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions
Odd(n) := ∃x ∈ Z(n = 2x+ 1) and Even(n) := ∃x ∈ Z(n = 2x); !True = False and !False = True.

Solution:
Let P(n) be "oddr(n) returns True if n is odd, or False if n is even". We will show that P(n) is true for all
integers n ≥ 0 by induction on n.

Base Case: (n = 0)
0 is even, so P(0) is true if oddr(0) returns False, which is exactly the base case of oddr, so P(0) is true.
Inductive Hypothesis: Suppose P(k) is true for an arbitrary integer k ≥ 0.
Inductive Step:

• Case 1: k + 1 is even.
If k+1 is even, then there is an integer x s.t. k+1 = 2x, so then k = 2x−1 = 2(x−1)+1, so therefore
k is odd. We know that since k+1 > 0, oddr(k+1) should return !oddr(k). By the Inductive Hypothesis, we
know that since k is odd, oddr(k) returns True, so oddr(k+1) returns !oddr(k)= False, and k + 1 is even,
therefore P(k+1) is true.

• Case 2: k + 1 is odd.
If k + 1 is odd, then there is an integer x s.t. k + 1 = 2x + 1, so then k = 2x and therefore k is even.
We know that since k + 1 > 0, oddr(k+1) should return !oddr(k). By the Inductive Hypothesis, we know
that since k is even, oddr(k) returns False, so oddr(k+1) returns !oddr(k)= True, and k + 1 is odd, there-
fore P(k+1) is true.

Then P(k + 1) is true for all cases. Thus, we have shown P(n) is true for all integers n ≥ 0 by induction.
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4. Strong Induction: Stamp Collection
A store sells 3 cent and 5 cent stamps. Use strong induction to prove that you can make exactly n cents worth
of stamps for all n ≥ 10.

Hint: you’ll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.
Solution:
Let P(n) be defined as "You can buy exactly n cents of stamps". We will prove P (n) is true for all integers
n ≥ 10 by strong induction.

Base Cases: (n = 10, 11, 12):

• n = 10: 10 cents of stamps can be made from two 5 cent stamps.
• n = 11: 11 cents of stamps can be made from one 5 cent and two 3 cent stamps.
• n = 12: 12 cents of stamps can be made from four 3 cent stamps.

Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 12, P(10) ∧P(11) ∧... ∧P(k) holds.

Inductive Step:

Goal: Show P (k+1), i.e. show that we can make k+1 cents in stamps.

We want to buy k + 1 cents in stamps. By the I.H., we can buy exactly (k + 1) − 3 = k − 2 cents in
stamps. Then, we can add another 3 cent stamp in order to buy k + 1 cents in stamps, so P(k + 1) is
true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k−2),
and add 3 to achieve P(k + 1). Therefore we needed to be able to assume that k − 2 ≥ 10. Adding 2 to
both sides, we needed to be able to assume that k ≥ 12. So, we have to prove the base cases up to 12,
that is: 10, 11, 12.
Another way to think about this is that we had to use a fact from 3 steps back from k + 1 to k − 2 in
the IS, so we needed 3 base cases.

Conclusion: So by strong induction, P(n) is true for all integers n ≥ 10.
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5. Strong Induction: Recursively Defined Functions
Consider the function f(n) defined for integers n ≥ 1 as follows:
f(1) = 1 for n = 1
f(2) = 4 for n = 2
f(3) = 9 for n = 3
f(n) = f(n− 1)− f(n− 2) + f(n− 3) + 2(2n− 3) for n ≥ 4

Prove by strong induction that for all n ≥ 1, f(n) = n2.
Complete the induction proof below.
Solution:

1 Let P(n) be defined as " f(n) = n2". We will prove P (n) is true for all integers n ≥ 1 by strong induction.

2 Base Cases (n = 1, 2, 3):

• n = 1: f(1) = 1 = 12.
• n = 2: f(2) = 4 = 22.
• n = 3: f(3) = 9 = 32

So the base cases hold.

3 Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 3, P(j) is true for 1 ≤ j ≤ k.

4 Inductive Step:

Goal: Show P (k + 1), i.e. show that f(k + 1) = (k + 1)2.

f(k + 1) = f(k + 1− 1)− f(k + 1− 2) + f(k + 1− 3) + 2(2(k + 1)− 3) Definition of f
= f(k)− f(k − 1) + f(k − 2) + 2(2k − 1)

= k2 − (k − 1)2 + (k − 2)2 + 2(2k − 1) By IH
= k2 − (k2 − 2k + 1) + (k2 − 4k + 4) + 4k − 2

= (k2 − k2 + k2) + (2k − 4k + 4k) + (−1 + 4− 2)

= k2 + 2k + 1

= (k + 1)2

So P(k + 1) holds.

5 Conclusion: So by strong induction, P(n) is true for all integers n ≥ 1.
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6. Strong Induction: A Variation of the Stamp Problem
A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy".
For example, P (3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it
turns out that P(n) is true for any n ≥ 18. Use strong induction on n to prove this.

Hint: you’ll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.
Solution:
Let P(n) be defined as "You are able to buy n packs of candy". We will prove P (n) is true for all integers
n ≥ 18 by strong induction.
Base Cases: (n = 18, 19, 20, 21):

• n = 18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18 = 2 ∗ 7 + 1 ∗ 4).
• n = 19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19 = 1 ∗ 7 + 3 ∗ 4).
• n = 20: 20 packs of candy can be made up of 5 packs of 4 (20 = 5 ∗ 4).
• n = 21: 21 packs of candy can be made up of 3 packs of 7 (21 = 3 ∗ 7).

Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 21, P(18) ∧... ∧P(k) hold.

Inductive Step:

Goal: Show P (k + 1), i.e. show that we can buy k + 1 packs of candy.

We want to buy k+1 packs of candy. By the I.H., we can buy exactly k−3 packs, so we can add another
pack of 4 packs in order to buy k + 1 packs of candy, so P(k + 1) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k−3),
and add 4 to achieve P(k + 1). Therefore we needed to be able to assume that k − 3 ≥ 18. Adding 3 to
both sides, we needed to be able to assume that k ≥ 21. So, we have to prove the base cases up to 21,
that is: 18, 19, 20, 21.
Another way to think about this is that we had to use a fact from 4 steps back from k + 1 to k − 3 in
the IS, so we needed 4 base cases.

Conclusion: So by strong induction, P(n) is true for all integers n ≥ 18.
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