CSE 390Z: Mathematics for Computation Workshop
Week 6 Workshop Solutions

0. Induction: Warm-Up

Prove by induction that 5 | (6™ — 1) for all n € N.

Solution:

Let P(n) be "5 | 6™ — 1" for all n € N. We will show P(n) for all n by induction.

Base Case (n=0). 6°-1=1-1=0=0-5,505]|6"—1.

Induction Hypothesis. Assume P(k) holds for some arbitrary integer k > 0.

Induction Step. Goal: We aim to show P(k + 1), i.e. that 5| (6¥+1 —1).
By the Inductive Hypothesis, we have that 5 | (6 — 1). Then by definition of divides, 65 — 1 = 55 for
some j € Z. Observe:

6" —1=5j
6" — 6 =305
6" —1=30j+5
65T —1=5(65+1)

Since j is an integer, j 4 1 is an integer. They by definition of divides, we have that 5 | (671 — 1), as
desired. So P(k + 1) holds.

Conclusion. P(n) is true for all n € N by induction.

1. Induction: Equality

Prove by induction that for every n € N, the following equality is true:

020+121+222++n2n:(n_1)2n+1+2



Solution:
Let P(n) be “0-20 + 1.2 +2.22 ... 4 n-2" = (n — 1)2""1 + 2" We will prove P(n) for all n € N by
induction.

Base Case. 0-2° =0 and (0 — 1)2°t! + 2= -2 42 =0, so P(0) is true.
Induction Hypothesis. Assume that P(k) holds true for some arbitrary integer k& > 0.

Induction Step We show P(k + 1):

0-204+1-2842-22 4 ... 4 (k4 1)- 21

=0-2041-2' 42224 ... 4 k- 28 £ (k+1)-28"1  [Show another term inside “.."]

= (k—1)2" 4 2 4 (k + 1)2~! [Induction Hypothesis]

= ((k=1)+ (k+1)2" 42 [Group multiples of 28+1]
= (2k)2Ft! 42 [Algebra]

= k2k2 4 2 [Algebral.

Therefore P(k + 1) holds.

Conclusion. P(n) holds for all n € N by induction.



2. Induction: Inequality

Prove by induction on n that for all integers n > 0 the inequality (3 + )" > 3" + na3" ! is true.
Solution:

Let P(n) be "(3+ 7)™ > 3" + na3"1". We will prove P(n) is true for all n € N, by induction.

Base Case: (n =0): 3+ 7)?=1and3°+0-7-371=1,since 1 >1, P(0) is true.
Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer k € N.

Inductive Step:

Goal: Show P(k+1), i.e. show (3+m)t1 > 31 4 (k4 1)7p3k+1)—1 = 3k+1 4 (k4 1)73F

B4+m) =B +m)k- (347) (Factor out (3 + 7))
> (3F 4 k3F1n) . (34 7) (By LH., (34 ) > 0)
=338 + 3k 4+ 3k3F 1 4 k35142 (Distributive property)
= 38 4 3hr 4 k3P k3R In? (Simplify)
=38 (k + 1)3Fm 4 k38 1n? (Factor out (k+1))
>3k (k4 1)7w3® (k3k172 > 0)

Conclusion: So by induction, P(n) is true for all n € N.

3. Inductively Odd

An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and
needs your help proving that it is correct.

public static boolean oddr(int n) {

if (n == 0)
return False;
else

return 'oddr(n—1);



Help the student by writing an inductive proof to prove that for all integers n > 0, the method oddr returns
True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions
Odd(n) := 3z € Z(n =2z + 1) and Even(n) := 3x € Z(n = 2x); !True = False and !False = True.

Solution:
Let P(n) be "oddr(n) returns True if n is odd, or False if n is even". We will show that P(n) is true for all
integers n > 0 by induction on n.

Base Case: (n = 0)

0 is even, so P(0) is true if oddr(0) returns False, which is exactly the base case of oddr, so P(0) is true.
Inductive Hypothesis: Suppose P(k) is true for an arbitrary integer k > 0.

Inductive Step:

= Case 1: k+ 1 is even.

If K+ 1 is even, then there is an integer x s.t. k+1 = 2z, so then k =2z —1 =2(xz—1)+1, so therefore
k is odd. We know that since k41 > 0, oddr(k+1) should return !oddr(k). By the Inductive Hypothesis, we
know that since k is odd, oddr(k) returns True, so oddr(k+1) returns !oddr(k)= False, and k + 1 is even,
therefore P(k+1) is true.

= Case 2: k+ 1 is odd.

If £+ 1 is odd, then there is an integer x s.t. k+ 1 = 2x + 1, so then k = 2x and therefore k is even.
We know that since k + 1 > 0, oddr(k+1) should return !oddr(k). By the Inductive Hypothesis, we know
that since k is even, oddr (k) returns False, so oddr(k+1) returns 'oddr(k)= True, and k + 1 is odd, there-
fore P(k+1) is true.

Then P(k 4 1) is true for all cases. Thus, we have shown P(n) is true for all integers n > 0 by induction.



4. Strong Induction: Stamp Collection

A store sells 3 cent and 5 cent stamps. Use strong induction to prove that you can make exactly n cents worth
of stamps for all n > 10.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.

Solution:

Let P(n) be defined as "You can buy exactly n cents of stamps". We will prove P(n) is true for all integers
n > 10 by strong induction.

Base Cases: (n = 10,11,12):

= n = 10: 10 cents of stamps can be made from two 5 cent stamps.
= n = 11: 11 cents of stamps can be made from one 5 cent and two 3 cent stamps.

= n = 12: 12 cents of stamps can be made from four 3 cent stamps.
Inductive Hypothesis: Suppose for some arbitrary integer k > 12, P(10) AP(11) A... AP(k) holds.

Inductive Step:

Goal: Show P(k+1), i.e. show that we can make k+1 cents in stamps. ‘

We want to buy k + 1 cents in stamps. By the I.H., we can buy exactly (k+ 1) —3 = k — 2 cents in
stamps. Then, we can add another 3 cent stamp in order to buy k£ + 1 cents in stamps, so P(k + 1) is
true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k —2),
and add 3 to achieve P(k + 1). Therefore we needed to be able to assume that k¥ — 2 > 10. Adding 2 to

both sides, we needed to be able to assume that k£ > 12. So, we have to prove the base cases up to 12,
that is: 10,11,12.

Another way to think about this is that we had to use a fact from 3 steps back from k+ 1 to kK — 2 in
the IS, so we needed 3 base cases.

Conclusion: So by strong induction, P(n) is true for all integers n > 10.



5. Strong Induction: Recursively Defined Functions
Consider the function f(n) defined for integers n > 1 as follows:
fl)y=1forn=1

f(2)=4forn=2

fB)=9forn=3

fm)=fn=1)—fn—2)+ f(n —3)+2(2n —3) forn > 4

Prove by strong induction that for all n > 1, f(n) = n?.
Complete the induction proof below.
Solution:
1 Let P(n) be defined as " f(n) = n". We will prove P(n) is true for all integers n > 1 by strong induction.

2 Base Cases (n =1,2,3):

= n=1 f(1)=1=12
= =2 f(2)=4=22
= n=23 f(3)=9=3

So the base cases hold.
3 Inductive Hypothesis: Suppose for some arbitrary integer k£ > 3, P(j) is true for 1 < j < k.

4 Inductive Step:

Goal: Show P(k + 1), i.e. show that f(k+1) = (k+ 1)%

flk+1)=fk+1-1)—f(k+1-2)+ f(k+1-3)+22(k+1)—3) Definition of f
= f(k)— f(k—1)+ f(k—2) +2(2k — 1)
=k —(k—1)*+ (k—2)?+2(2k - 1) By IH
=k — (K> =2k +1) + (k* —4k +4) + 4k — 2
= (K — K+ kY + 2k — 4k 4+ 4k) + (-1 +4—-2)
=k +2k+1
= (k+1)2

So P(k + 1) holds.

5 Conclusion: So by strong induction, P(n) is true for all integers n > 1.



6. Strong Induction: A Variation of the Stamp Problem

A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy".
For example, P(3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it
turns out that P(n) is true for any n > 18. Use strong induction on 7 to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.

Solution:

Let P(n) be defined as "You are able to buy n packs of candy". We will prove P(n) is true for all integers
n > 18 by strong induction.

Base Cases: (n = 18,19,20,21):

» n = 18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18 =27+ 1 % 4).
» 1 =19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19 =17+ 3 x4).
= n = 20: 20 packs of candy can be made up of 5 packs of 4 (20 = 5% 4).
» n = 21: 21 packs of candy can be made up of 3 packs of 7 (21 =3 % 7).

Inductive Hypothesis: Suppose for some arbitrary integer k > 21, P(18) A... AP(k) hold.

Inductive Step:

Goal: Show P(k + 1), i.e. show that we can buy k + 1 packs of candy. ‘

We want to buy k41 packs of candy. By the I.H., we can buy exactly k — 3 packs, so we can add another
pack of 4 packs in order to buy k + 1 packs of candy, so P(k + 1) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k — 3),
and add 4 to achieve P(k + 1). Therefore we needed to be able to assume that £ — 3 > 18. Adding 3 to
both sides, we needed to be able to assume that £ > 21. So, we have to prove the base cases up to 21,
that is: 18,19, 20, 21.

Another way to think about this is that we had to use a fact from 4 steps back from k£ + 1 to kK — 3 in
the IS, so we needed 4 base cases.

Conclusion: So by strong induction, P(n) is true for all integers n > 18.



