Week 8 Workshop

Conceptual Review

(a) Set Definitions

Set Equality: $A = B := \forall x (x \in A \leftrightarrow x \in B)$ Subset: $A \subseteq B := \forall x (x \in A \rightarrow x \in B)$ Union: $A \cup B := \{x : x \in A \lor x \in B\}$ Intersection: $A \cap B := \{x : x \in A \land x \in B\}$ Set Difference: $A \setminus B = A - B := \{x : x \in A \land x \notin B\}$ Set Complement: $\overline{A} = A^C := \{x : x \notin A\}$ Powerset: $\mathcal{P}(A) := \{B : B \subseteq A\}$ Cartesian Product: $A \times B := \{(a, b) : a \in A, b \in B\}$

(b) How do we prove that for sets A and B, $A \subseteq B$?

(c) How do we prove that for sets A and B, A = B?

1. A Basic Subset Proof

Prove that $A \cap B \subseteq A \cup B$.

2. Set Equality Proof

(a) Write an English proof to show that $A \cap (A \cup B) \subseteq A$ for any sets A, B.

(b) Write an English proof to show that $A \subseteq A \cap (A \cup B)$ for any sets A, B.

(c) Combine part (a) and (b) to conclude that $A \cap (A \cup B) = A$ for any sets A, B.

3. Subsets

Prove or disprove: for any sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

4. ∪ → ∩**?**

Prove or disprove: for all sets A and B, $A \cup B \subseteq A \cap B$.

5. Set Equality Proof II

We want to prove that $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

(a) First prove this with a chain of logical equivalences proof.

(b) Now prove this with an English proof that is made of two subset proofs.

6. Cartesian Product Proof

Complete this English proof to show that $A \times C \subseteq (A \cup B) \times (C \cup D)$.

Let $x \in \underline{ } \times \underline{ }$ be arbitrary. Then x is of the form x = (y, z), where $y \in \underline{ }$ and $z \in \underline{ }$. Then certainly $y \in \underline{ }$ or $y \in \underline{ }$. Then by definition of $\underline{ } , y \in (\underline{ } , \underline{ })$. (Hint: operator, set operator set) Similarly, since $z \in \underline{ }$, certainly $z \in \underline{ }$ or $z \in \underline{ }$. Then by definition of $\underline{ } , z \in (\underline{ } , \underline{ })$. Since x = (y, z), then $x \in (\underline{ } , \underline{ }) \times (\underline{ })$. Since x was $\underline{ } ,$ we have shown $\underline{ } \times \underline{ } \subseteq (\underline{ }) \times (\underline{ })$.

7. Structural Induction: Divisible by 4

Define a set ${\mathfrak B}$ of numbers by:

- 4 and 12 are in ${\mathfrak B}$
- If $x \in \mathfrak{B}$ and $y \in \mathfrak{B}$, then $x + y \in \mathfrak{B}$ and $x y \in \mathfrak{B}$

Prove by induction that every number in ${\mathfrak B}$ is divisible by 4. Complete the proof below:

8. Structural Induction: Dictionaries

Recursive definition of a Dictionary (i.e. a Map):

- Basis Case: [] is the empty dictionary
- Recursive Case: If D is a dictionary, and a and b are elements of the universe, then (a → b) :: D is a dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

Recursive functions on Sets:

len([]) = 0len(a :: C) = 1 + len(C)

Statement to prove:

Prove that len(D) = len(AllKeys(D)).

Bonus. Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are **CharTrees** and $c \in \Sigma$, then CharTree(L, c, R) is also a **CharTree**

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

The preorder function returns the preorder traversal of all elements in a CharTree.

 $\begin{array}{ll} {\tt preorder(Null)} & = \varepsilon \\ {\tt preorder(CharTree}(L,c,R)) & = c \cdot {\tt preorder}(L) \cdot {\tt preorder}(R) \end{array}$

The postorder function returns the postorder traversal of all elements in a CharTree.

 $\begin{array}{ll} \mathsf{postorder}(\mathtt{Null}) & = \varepsilon \\ \mathsf{postorder}(\mathtt{CharTree}(L,c,R)) & = \mathsf{postorder}(L) \cdot \mathsf{postorder}(R) \cdot c \end{array}$

• The mirror function produces the mirror image of a **CharTree**.

 $\begin{array}{ll} \mathsf{mirror}(\mathtt{Null}) &= \mathtt{Null} \\ \mathsf{mirror}(\mathtt{CharTree}(L,c,R)) &= \mathtt{CharTree}(\mathsf{mirror}(R),c,\mathsf{mirror}(L)) \\ \end{array}$

• Finally, for all strings x, let the "reversal" of x (in symbols x^R) produce the string in reverse order.

Additional Facts:

You may use the following facts:

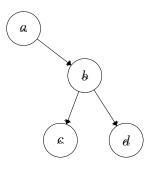
- For any strings $x_1, ..., x_k$: $(x_1 \cdot ... \cdot x_k)^R = x_k^R \cdot ... \cdot x_1^R$
- For any character c, $c^R = c$

Statement to Prove:

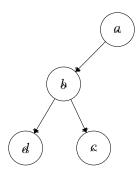
Show that for every **CharTree** T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every **CharTree**, T: $[preorder(T)]^R = postorder(mirror(T))$.

There is an example and space to work on the next page.

Example for Intuition:



Let T_i be the tree above. preorder $(T_i) =$ "abcd". T_i is built as (null, a, U)Where U is (V, b, W), V = (null, c, null), W = (null, d, null).



This tree is mirror (T_i) . postorder(mirror (T_i)) ="dcba", "dcba" is the reversal of "abcd" so [preorder (T_i)]^R = postorder(mirror (T_i)) holds for T_i