CSE 390Z: Mathematics for Computation Workshop

QuickCheck: Equivalence Proof Solutions (due Monday, April 14)

Please submit a response to the following questions on Gradescope. We do not grade on accuracy, so please submit your best attempt. You may either typeset your responses or hand-write them. Note that hand-written solutions must be legible to be graded.

We have created **this template** if you choose to typeset with Latex. **This guide** has specific information about scanning and uploading pdf files to Gradescope.

0. Equivalence Proof

Use a chain of equivalences to show that the following proposition is a tautology (i.e. always true).

$$((p \land q) \lor (p \to (\neg p \land r))) \lor p$$

Solution:

$((p \land q) \lor (p \to (\neg p \land r))) \lor p \equiv ((p \land q) \lor (\neg p \lor (\neg p \land r))) \lor p$	Law of Implication
$\equiv (p \land q) \lor ((\neg p \lor (\neg p \land r)) \lor p)$	Associativity
$\equiv (p \land q) \lor (((\neg p \land r) \lor \neg p) \lor p)$	Commutativity
$\equiv (p \land q) \lor ((\neg p \land r) \lor (\neg p \lor p))$	Associativity
$\equiv (p \wedge q) \vee ((\neg p \wedge r) \vee (p \vee \neg p))$	Commutativity
$\equiv (p \land q) \lor ((\neg p \land r) \lor T)$	Negation
$\equiv (p \land q) \lor T$	Domination
$\equiv T$	Domination

1. Video Solution

Watch this video on the solution after making an initial attempt. Then, answer the following questions.

(a) What is one thing you took away from the video solution?