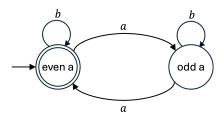
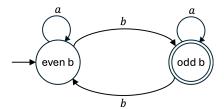

Week 9 Workshop Solutions

0. Constructing DFAs

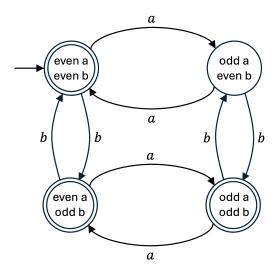
For each of the following, construct a DFA for the specified language over the alphabet $\Sigma = \{a, b\}$.


(a) Strings with odd length.

Solution:


(b) Strings with an even number of a's.

Solution:


(c) Strings with an odd number of b's.

Solution:

(d) Strings with an even number of a's **or** an odd number of b's.

Solution:

1. Constructing DFAs 2

Let $\Sigma := \{0, 1, 2, 3, 4, 5\}$. For an arbitrary string x over Σ , we can write $x = x_0 x_1 \cdots x_n$, where $x_0, x_1, ..., x_n \in \Sigma$. Define a language L over Σ as follows:

 $x \in L$ iff for every position i from 0 to n, if the value of x_i is odd, then every digit (character) that comes after x_i must be **greater** than x_i .

For example, the string $2124 \in L$ because 1 is the only odd digit and every digit after 1 is greater than 1. The string $21254 \notin L$ because 5 is an odd digit, 4 comes after 5, and 4 < 5. The string $211 \notin L$ because 1 comes after 1 and $1 \not > 1$.

(a) List 3 strings in L and 3 strings not in L. The strings should be over the alphabet Σ .

Solution:

Accepted:

- **1**45
- **135**
- **12425**
- **2004**
- **2034**

Rejected:

- **321**
- **1**1
- **455**
- **452**
- **2010**
- (b) Construct a regular expression for the language L.

Solution:

 $(0 \cup 2 \cup 4)^*(\varepsilon \cup 1)(2 \cup 4)^*(\varepsilon \cup 3)4^*(\varepsilon \cup 5)$

(c) Construct a CFG for the language L.

Solution:

 $\textbf{S} \rightarrow \textbf{ABCDEF}$

 $\mathbf{A} \rightarrow 0 \mathbf{A} |2 \mathbf{A} |4 \mathbf{A} | \varepsilon$

 $\mathbf{B} \to 1|\varepsilon$

 $\mathbf{C} o 2\mathbf{C}|4\mathbf{C}|arepsilon$

 $\mathbf{D} \to 3|\varepsilon$

 $\mathbf{E} \to 4\mathbf{E}|\varepsilon$

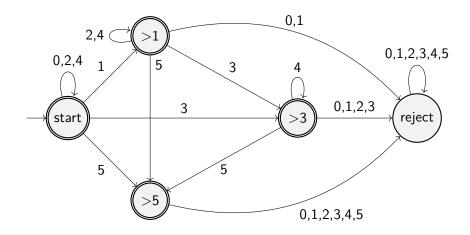
 $\mathbf{F} \rightarrow 5|\varepsilon$

Alternate Solution:

 $S \rightarrow 0S|2S|4S|A$

 $\mathbf{A} \rightarrow 1\mathbf{B}|\mathbf{B}$

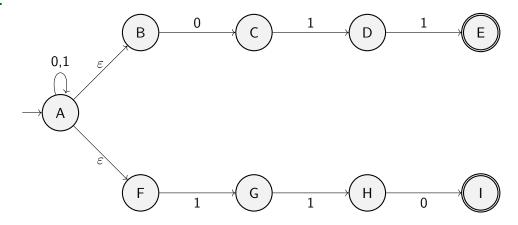
 $\mathbf{B} \to 2\mathbf{B}|4\mathbf{B}|\mathbf{C}$


 $\mathbf{C} o 3\mathbf{D} | \mathbf{D}$

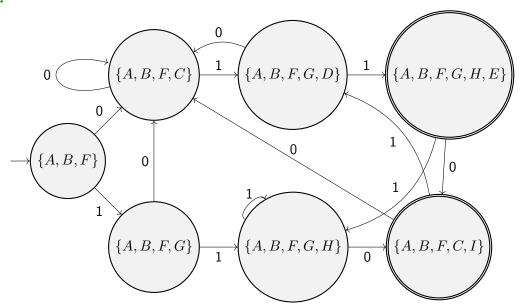
 ${f D}
ightarrow 4 {f D} | {f E}$

 ${\bf E}
ightarrow 5 | arepsilon$

(d) Construct a DFA for the language L.

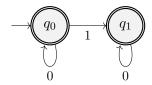

Solution:

2. NFAs 1

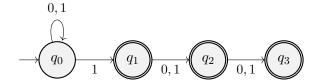

(a) Construct an NFA for the language "all binary strings ending in either 011 or 110".

Solution:

(b) After you learn this on Wednesday: Construct an equivalent DFA for the same language.


Solution:

3. NFAs 2


- (a) Construct an NFA for the language "all strings from the alphabet $\Sigma=\{0,1,2\}$ containing only 0's and 1's, and at most one 1".
 - For instance, the strings 0000, 0010, 1000, 0, 1, and ϵ should be accepted. The strings 0101, 2, 000020, 102000, 011, should be rejected.

Solution:

(b) Construct an NFA for the language "all binary strings that have a 1 as one of the last three digits".

Solution:

