CSE 390Z: Mathematics for Computation Workshop

Week 9 Workshop

0. Construct	ing	DF	As
--------------	-----	----	----

For each of the following, construct a DFA for	the specified language over	the alphabet $\Sigma = \{a, b\}$.
--	-----------------------------	------------------------------------

(a) Strings with odd length.

(b) Strings with an even number of a's.

(c) Strings with an odd number of b's.

(d) Strings with an even number of a's \mathbf{or} an odd number of b's.

1. Constructing DFAs 2

Let $\Sigma:=\{0,1,2,3,4,5\}$. For an arbitrary string x over Σ , we can write $x=x_0x_1\cdots x_n$, where $x_0,x_1,...,x_n\in\Sigma$. Define a language L over Σ as follows:

 $x \in L$ iff for every position i from 0 to n, if the value of x_i is odd, then every digit (character) that comes after x_i must be **greater** than x_i .

For example, the string $2124 \in L$ because 1 is the only odd digit and every digit after 1 is greater than 1. The string $21254 \notin L$ because 5 is an odd digit, 4 comes after 5, and 4 < 5. The string $211 \notin L$ because 1 comes after 1 and $1 \not> 1$.

(a) List 3 strings in L and 3 strings not in L. The strings should be over the alphabet Σ .

- (b) Construct a regular expression for the language L.
- (c) Construct a CFG for the language L.

(d) Construct a DFA for the language L.

\sim		-
· ,	 $L \wedge \cdot$	
_	 -4	

(a) Construct an NFA for the language "all binary strings ending in either 011 or 110".

(b) After you learn this on Wednesday: Construct an equivalent DFA for the same language.

3. NFAs 2

(a) Construct an NFA for the language "all strings from the alphabet $\Sigma=\{0,1,2\}$ containing only 0's and 1's, and at most one 1".

For instance, the strings 0000, 0010, 1000, 0, 1, and ϵ should be accepted. The strings 0101, 2, 000020, 102000, 011, should be rejected.

(b) Construct an NFA for the language "all binary strings that have a 1 as one of the last three digits".