Week 7 Workshop Solutions

0. Structural Induction: Divisible by 4

Define a set \mathfrak{B} of numbers by:

- 4 and 12 are in \mathfrak{B}
- If $x \in \mathfrak{B}$ and $y \in \mathfrak{B}$, then $x+y \in \mathfrak{B}$ and $x-y \in \mathfrak{B}$

Prove by induction that every number in \mathfrak{B} is divisible by 4 .

Complete the proof below:

Solution:

Let $P(b)$ be the claim that $4 \mid b$. We will prove P true for all numbers $b \in \mathfrak{B}$ by structural induction.
Base Case:

- $4 \mid 4$ is trivially true, so $P(4)$ holds.
- $12=3 \cdot 4$, so $4 \mid 12$ and $P(12)$ holds.

Inductive Hypothesis: Suppose $P(x)$ and $P(y)$ for some arbitrary $x, y \in \mathfrak{B}$.
Inductive Step:
Goal: Prove $P(x+y)$ and $P(x-y)$
Per the IH, $4 \mid x$ and $4 \mid y$. By the definition of divides, $x=4 k$ and $y=4 j$ for some integers k, j. Then, $x+y=4 k+4 j=4(k+j)$. Since integers are closed under addition, $k+j$ is an integer, so $4 \mid x+y$ and $P(x+y)$ holds.
Similarly, $x-y=4 k-4 j=4(k-j)=4(k+(-1 \cdot j))$. Since integers are closed under addition and multiplication, and -1 is an integer, we see that $k-j$ must be an integer. Therefore, by the definition of divides, $4 \mid x-y$ and $P(x-y)$ holds.
So, $P(t)$ holds in both cases.
Conclusion: Therefore, $P(b)$ holds for all numbers $b \in \mathfrak{B}$.

1. Structural Induction: a's and b's

Define a set \mathcal{S} of character strings over the alphabet $\{a, b\}$ by:

- a and $a b$ are in \mathcal{S}
- If $x \in \mathcal{S}$ and $y \in \mathcal{S}$, then $a x b \in \mathcal{S}$ and $x y \in \mathcal{S}$

Prove by induction that every string in \mathcal{S} has at least as many a 's as it does b 's.

Solution:

Let $P(s)$ be the claim that a string has at least many a 's as it does b 's. We will prove $P(s)$ true for all strings $s \in \mathcal{S}$ using structural induction.

Base Case:

- Consider $s=a$: there is one a and zero b 's, so $P(a)$ holds.
- Consider $s=a b$: there is one a and one b, so $P(a b)$ holds.

Inductive Hypothesis: Suppose $P(x)$ and $P(y)$ hold for some arbitrary $x, y \in \mathcal{S}$. Inductive Step:

Goal: Prove $P(a x b)$ and $P(x y)$
First, we consider $a x b$. We are adding one a and one b to x. Per the IH, x must have at least as many a 's as it does b 's. Therefore, since adding one a and one b does not change the difference in the number of a 's and b 's, $a x b$ must have at least many a 's as it does b 's. Thus, $P(a x b)$ holds.
Second, we consider $x y$. Let m, n represent the number of a 's in x and y respectively. Similarly, let i, j represent the number of b 's in x and y. Per the $I H$, we know that $m \geq i$ and $n \geq j$. Adding these together, we see $m+n \geq i+j$. Therefore, $x y$ must have at least as many a 's (i.e., $m+n$ a's) as it does b 's (i.e., $i+j$ b's). Thus, $P(x y)$ holds.
So, $P(t)$ holds in both cases.
Conclusion: Therefore, per the principles of structural induction, $P(s)$ holds for all strings in \mathcal{S}.

2. Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are CharTrees and $c \in \Sigma$, then $\operatorname{CharTree}(L, c, R)$ is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

- The preorder function returns the preorder traversal of all elements in a CharTree.

$$
\begin{array}{ll}
\operatorname{preorder}(\operatorname{Null}) & =\varepsilon \\
\operatorname{preorder}(\operatorname{CharTree}(L, c, R)) & =c \cdot \operatorname{preorder}(L) \cdot \operatorname{preorder}(R)
\end{array}
$$

- The postorder function returns the postorder traversal of all elements in a CharTree.

```
postorder(Null) =\varepsilon
postorder(CharTree (L,c,R)) = postorder (L) \cdot postorder (R) \cdotc
```

- The mirror function produces the mirror image of a CharTree.

$$
\begin{array}{ll}
\operatorname{mirror}(\operatorname{Null}) & =\operatorname{Null} \\
\operatorname{mirror}(\operatorname{CharTree}(L, c, R)) & =\operatorname{CharTree}(\operatorname{mirror}(R), c, \operatorname{mirror}(L))
\end{array}
$$

- Finally, for all strings x, let the "reversal" of x (in symbols x^{R}) produce the string in reverse order.

Additional Facts:

You may use the following facts:

- For any strings $x_{1}, \ldots, x_{k}:\left(x_{1} \cdot \ldots \cdot x_{k}\right)^{R}=x_{k}^{R} \cdot \ldots \cdot x_{1}^{R}$
- For any character $c, c^{R}=c$

Statement to Prove:

Show that for every CharTree T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every CharTree, T : $[\operatorname{preorder}(T)]^{R}=$ postorder(mirror $(T))$.

There is an example and space to work on the next page.

Example for Intuition:

Let T_{i} be the tree above.
$\operatorname{preorder}\left(T_{i}\right)=$ "abcd".
T_{i} is built as (null, a, U)
Where U is (V, b, W),
This tree is mirror $\left(T_{i}\right)$.
postorder $\left(\operatorname{mirror}\left(T_{i}\right)\right)=$ "dcba",
"dcba" is the reversal of "abcd" so
$\left[\operatorname{preorder}\left(T_{i}\right)\right]^{R}=\operatorname{postorder}\left(\operatorname{mirror}\left(T_{i}\right)\right)$ holds for T_{i}

(null, c, null $), W=($ null,d, null $)$.

Solution:

 induction.
Base case $(T=\operatorname{Null}): \operatorname{preorder}(T)^{R}=\varepsilon^{R}=\varepsilon=\operatorname{postorder}(\mathrm{Null})=\operatorname{postorder}(\operatorname{mirror}(\mathrm{Null}))$, so $P(\mathrm{Null})$ holds.
Inductive hypothesis: Suppose $P(L) \wedge P(R)$ for arbitrary CharTrees L, R.
Inductive step:
We want to show $P(\operatorname{CharTree}(L, c, R))$,
i.e. $[\operatorname{preorder}(\operatorname{CharTree}(L, c, R))]^{R}=\operatorname{postorder}(\operatorname{mirror}(\operatorname{CharTree}(L, c, R)))$.

Let c be an arbitrary element in Σ, and let $T=\operatorname{Char\operatorname {Tree}(L,c,R)~}$

$$
\begin{array}{rlr}
\operatorname{preorder}(T)^{R} & =[c \cdot \operatorname{preorder}(L) \cdot \operatorname{preorder}(R)]^{R} & \text { defn of preorder } \\
& =\operatorname{preorder}(R)^{R} \cdot \operatorname{preorder}(L)^{R} \cdot c^{R} & \text { Fact } 1 \\
& =\operatorname{preorder}(R)^{R} \cdot \operatorname{preorder}(L)^{R} \cdot c & \text { Fact } 2 \\
& =\operatorname{postorder}(\operatorname{mirror}(R)) \cdot \operatorname{postorder}(\operatorname{mirror}(L)) \cdot c & \text { by I.H. } \\
& =\operatorname{postorder}(\operatorname{Char} \operatorname{Tree}(\operatorname{mirror}(R), c, \operatorname{mirror}(L)) & \text { recursive defn of postorder } \\
& =\operatorname{postorder}(\operatorname{mirror}(\operatorname{Char} \operatorname{Tree}(L, c, R))) & \text { recursive defn of mirror } \\
& =\operatorname{postorder}(\operatorname{mirror}(T)) & \operatorname{defn} \text { of } T
\end{array}
$$

So $P($ CharTree $(L, c, R))$ holds.
By the principle of induction, $P(T)$ holds for all CharTrees T.

