0. Structural Induction: Divisible by 4
Define a set \mathcal{B} of numbers by:
- 4 and 12 are in \mathcal{B}
- If $x \in \mathcal{B}$ and $y \in \mathcal{B}$, then $x + y \in \mathcal{B}$ and $x - y \in \mathcal{B}$

Prove by induction that every number in \mathcal{B} is divisible by 4.

Complete the proof below:

Solution:
Let $P(b)$ be the claim that $4 \mid b$. We will prove P true for all numbers $b \in \mathcal{B}$ by structural induction.

Base Case:
- $4 \mid 4$ is trivially true, so $P(4)$ holds.
- $12 = 3 \cdot 4$, so $4 \mid 12$ and $P(12)$ holds.

Inductive Hypothesis: Suppose $P(x)$ and $P(y)$ for some arbitrary $x, y \in \mathcal{B}$.

Inductive Step: $\boxed{\text{Goal: Prove } P(x + y) \text{ and } P(x - y)\}$
Per the IH, $4 \mid x$ and $4 \mid y$. By the definition of divides, $x = 4k$ and $y = 4j$ for some integers k, j. Then, $x + y = 4k + 4j = 4(k + j)$. Since integers are closed under addition, $k + j$ is an integer, so $4 \mid x + y$ and $P(x + y)$ holds.
Similarly, $x - y = 4k - 4j = 4(k - j) = 4(k + (-1 \cdot j))$. Since integers are closed under addition and multiplication, and -1 is an integer, we see that $k - j$ must be an integer. Therefore, by the definition of divides, $4 \mid x - y$ and $P(x - y)$ holds.
So, $P(t)$ holds in both cases.

Conclusion: Therefore, $P(b)$ holds for all numbers $b \in \mathcal{B}$.
1. **Structural Induction: a’s and b’s**

Define a set S of character strings over the alphabet $\{a, b\}$ by:

- a and ab are in S
- If $x \in S$ and $y \in S$, then $axb \in S$ and $xy \in S$

Prove by induction that every string in S has at least as many a’s as it does b’s.

Solution:

Let $P(s)$ be the claim that a string has at least many a’s as it does b’s. We will prove $P(s)$ true for all strings $s \in S$ using structural induction.

Base Case:

- Consider $s = a$: there is one a and zero b’s, so $P(a)$ holds.
- Consider $s = ab$: there is one a and one b, so $P(ab)$ holds.

Inductive Hypothesis: Suppose $P(x)$ and $P(y)$ hold for some arbitrary $x, y \in S$.

Inductive Step:

Goal: Prove $P(axb)$ and $P(xy)$

First, we consider axb. We are adding one a and one b to x. Per the IH, x must have at least as many a’s as it does b’s. Therefore, since adding one a and one b does not change the difference in the number of a’s and b’s, axb must have at least many a’s as it does b’s. Thus, $P(axb)$ holds.

Second, we consider xy. Let m, n represent the number of a’s in x and y respectively. Similarly, let i, j represent the number of b’s in x and y. Per the IH, we know that $m \geq i$ and $n \geq j$. Adding these together, we see $m + n \geq i + j$. Therefore, xy must have at least as many a’s (i.e., $m + n$ a’s) as it does b’s (i.e., $i + j$ b’s). Thus, $P(xy)$ holds.

So, $P(t)$ holds in both cases.

Conclusion: Therefore, per the principles of structural induction, $P(s)$ holds for all strings in S.
2. Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are CharTrees and $c \in \Sigma$, then CharTree(L, c, R) is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

- The preorder function returns the preorder traversal of all elements in a CharTree.
 \[
 \text{preorder(Null)} = \varepsilon \\
 \text{preorder(CharTree}(L, c, R)) = c \cdot \text{preorder}(L) \cdot \text{preorder}(R)
 \]

- The postorder function returns the postorder traversal of all elements in a CharTree.
 \[
 \text{postorder(Null)} = \varepsilon \\
 \text{postorder(CharTree}(L, c, R)) = \text{postorder}(L) \cdot \text{postorder}(R) \cdot c
 \]

- The mirror function produces the mirror image of a CharTree.
 \[
 \text{mirror(Null)} = \text{Null} \\
 \text{mirror(CharTree}(L, c, R)) = \text{CharTree}(\text{mirror}(R), c, \text{mirror}(L))
 \]

- Finally, for all strings x, let the “reversal” of x (in symbols x^R) produce the string in reverse order.

Additional Facts:
You may use the following facts:

- For any strings x_1, \ldots, x_k: $(x_1 \cdot \ldots \cdot x_k)^R = x_k^R \cdot \ldots \cdot x_1^R$
- For any character c, $c^R = c$

Statement to Prove:
Show that for every CharTree T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every CharTree, T: $[\text{preorder}(T)]^R = \text{postorder}(\text{mirror}(T))$.

There is an example and space to work on the next page.
Example for Intuition:

Let T_i be the tree above.

- $\text{preorder}(T_i) = \text{"abcd"}$. $\text{postorder}(\text{mirror}(T_i)) = \text{"dcba"}$.
- T_i is built as (null, a, U)
 - U is (V, b, W)
 - $V = (\text{null}, c, \text{null})$
 - $W = (\text{null}, d, \text{null})$

This tree is mirror T_i.

Solution:

Let $P(T)$ be $\left[\text{preorder}(T)\right]^R = \text{postorder}(\text{mirror}(T))$. We show $P(T)$ holds for all CharTrees T by structural induction.

Base case ($T = \text{Null}$): $\text{preorder}(T)^R = \epsilon^R = \epsilon = \text{postorder}(\text{Null}) = \text{postorder}(\text{mirror}(\text{Null}))$, so $P(\text{Null})$ holds.

Inductive hypothesis: Suppose $P(L) \land P(R)$ for arbitrary CharTrees L, R.

Inductive step: We want to show $P(\text{CharTree}(L, c, R))$, i.e. $\left[\text{preorder}(\text{CharTree}(L, c, R))\right]^R = \text{postorder}(\text{mirror}(\text{CharTree}(L, c, R)))$.

Let c be an arbitrary element in Σ, and let $T = \text{CharTree}(L, c, R)$.

\[
\text{preorder}(T)^R = \left[c \cdot \text{preorder}(L) \cdot \text{preorder}(R) \right]^R \\
= \text{preorder}(R)^R \cdot \text{preorder}(L)^R \cdot c^R \quad \text{Fact 1} \\
= \text{preorder}(R)^R \cdot \text{preorder}(L)^R \cdot c \quad \text{Fact 2} \\
= \text{postorder}(\text{mirror}(R)) \cdot \text{postorder}(\text{mirror}(L)) \cdot c \quad \text{by I.H.} \\
= \text{postorder}(\text{CharTree}(\text{mirror}(R), c, \text{mirror}(L))) \quad \text{recursive defn of postorder} \\
= \text{postorder}(\text{mirror}(\text{CharTree}(L, c, R))) \quad \text{recursive defn of mirror} \\
= \text{postorder}(\text{mirror}(T)) \quad \text{defn of } T
\]

So $P(\text{CharTree}(L, c, R))$ holds.

By the principle of induction, $P(T)$ holds for all CharTrees T.

4