Week 6 Workshop Solutions

Conceptual Review

Set Theory
(a) Definitions

Set Equality: $A=B:=\forall x(x \in A \leftrightarrow x \in B)$
Subset: $A \subseteq B:=\forall x(x \in A \rightarrow x \in B)$
Union: $A \cup B:=\{x: x \in A \vee x \in B\}$
Intersection: $A \cap B:=\{x: x \in A \wedge x \in B\}$
Set Difference: $\quad A \backslash B=A-B:=\{x: x \in A \wedge x \notin B\}$
Set Complement: $\bar{A}=A^{C}:=\{x: x \notin A\}$
Powerset: $\mathcal{P}(A):=\{B: B \subseteq A\}$
Cartesian Product: $A \times B:=\{(a, b): a \in A, b \in B\}$
(b) How do we prove that for sets A and $B, A \subseteq B$?

Solution:

Let $x \in A$ be arbitrary... thus $x \in B$. Since x was arbitrary, $A \subseteq B$.
(c) How do we prove that for sets A and $B, A=B$?

Solution:

Use two subset proofs to show that $A \subseteq B$ and $B \subseteq A$.

Set Theory

1. Set Operations

Let $A=\{1,2,5,6,8\}$ and $B=\{2,3,5\}$.
(a) What is the set $A \cap(B \cup\{2,8\})$?

Solution:

$\{2,5,8\}$
(b) What is the set $\{10\} \cup(A \backslash B)$?

Solution:

$\{1,6,8,10\}$
(c) What is the set $\mathcal{P}(B)$?

Solution:

$\{\{2,3,5\},\{2,3\},\{2,5\},\{3,5\},\{2\},\{3\},\{5\}, \emptyset\}$
(d) How many elements are in the set $A \times B$? List 3 of the elements.

Solution:

15 elements, for example $(1,2),(1,3),(1,5)$.

2. Standard Set Proofs

(a) Prove that $A \cap B \subseteq A \cup B$ for any sets A, B.

Solution:

Let $x \in A \cap B$ be arbitrary. Then by definition of intersection, $x \in A$ and $x \in B$. So certainly $x \in A$ or $x \in B$ (using the Elim \wedge and Intro \vee rules). Then by definition of union, $x \in A \cup B$. Since x was arbitrary, $A \cap B \subseteq A \cup B$.
(b) Prove that $A \cap(A \cup B)=A$ for any sets A, B.

Solution:

\Rightarrow
Let $x \in A \cap(A \cup B)$ be arbitrary. Then by definition of intersection, $x \in A$ and $x \in A \cup B$. So, $x \in A$ must be true $($ Elim \wedge). Since x was arbitrary, $A \cap(A \cup B) \subseteq A$.
\Leftarrow
Let $x \in A$ be arbitrary. So certainly $x \in A$ or $x \in B$ (by the Intro \vee rule). Then by definition of union, $x \in A \cup B$. Since $x \in A$ and $x \in A \cup B$, by definition of intersection, $x \in A \cap(A \cup B)$. Since x was arbitrary, $A \subseteq A \cap(A \cup B)$.

Thus we have shown that $A \cap(A \cup B)=A$ through two subset proofs.
(c) Prove that $A \cap(A \cup B)=A \cup(A \cap B)$ for any sets A, B.

Solution:

\Rightarrow
Let $x \in A \cap(A \cup B)$ be arbitrary. Then by definition of intersection $x \in A$ and $x \in A \cup B$. Since $x \in A$, then certainly $x \in A$ or $x \in A \cap B$ (Intro \vee). Then by definition of union. $x \in A \cup(A \cap B)$. Thus since x was arbitrary, we have shown $A \cap(A \cup B) \subseteq A \cup(A \cap B)$.
\Leftarrow
Let $x \in A \cup(A \cap B)$ be arbitrary. Then by definition of union, $x \in A$ or $x \in A \cap B$. Then by definition of intersection, $x \in A$, or $x \in A$ and $x \in B$. Then by distributivity, $x \in A$ or $x \in A$, and $x \in A$ or $x \in B$. Then by idempotency, $x \in A$, and $x \in A$ or $x \in B$. Then by definition of union, $x \in A$, and $x \in A \cup B$. Then by definition of intersection, $x \in A \cap(A \cup B)$. Thus since x was arbitrary, we have shown that $A \cup(A \cap B) \subseteq A \cap(A \cup B)$.

Thus we have shown $A \cap(A \cup B)=A \cup(A \cap B)$ through two subset proofs.

3. Cartesian Product Proof

Write an English proof to show that $A \times C \subseteq(A \cup B) \times(C \cup D)$.

Solution:

Let $x \in A \times C$ be arbitrary. Then x is of the form $x=(y, z)$, where $y \in A$ and $z \in C$. Then certainly $y \in A$ or $y \in B$ (by the Intro \vee rule). Then by definition of union, $y \in(A \cup B)$. Similarly, since $z \in C$, certainly
$z \in C$ or $z \in D$. Then by definition, $z \in(C \cup D)$. Since $x=(y, z)$, then $x \in(A \cup B) \times(C \cup D)$. Since x was arbitrary, we have shown $A \times C \subseteq(A \cup B) \times(C \cup D)$.

4. Powerset Proof

Suppose that $A \subseteq B$. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Solution:

Let X be an arbitrary set in $\mathcal{P}(A)$. By definition of power set, $X \subseteq A$. We need to show that $X \in \mathcal{P}(B)$, or equivalently, that $X \subseteq B$. Let $x \in X$ be arbitrary. Since $X \subseteq A$, it must be the case that $x \in A$. We were given that $A \subseteq B$. By definition of subset, any element of A is an element of B. So, it must also be the case that $x \in B$. Since x was arbitrary, we know any element of X is an element of B. By definition of subset, $X \subseteq B$. By definition of power set, $X \in \mathcal{P}(B)$. Since X was an arbitrary set, any set in $\mathcal{P}(A)$ is in $\mathcal{P}(B)$, or, by definition of subset, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

5. Proofs by Contradiction

For each part, write a proof by contradiction of the statement.
(a) If a is rational and $a b$ is irrational, then b is irrational.

Solution:

Suppose for the sake of contradiction that this statement is false, meaning there exists an a, b where a is rational and $a b$ is irrational, and b is not irrational. Then, b is rational. By definition of rational, $a=\frac{s}{t}$ and $b=\frac{x}{y}$ for some integers s, t, x, y where $t \neq 0$ and $y \neq 0$. Multiplying these together, we get $a b=\frac{s x}{t y}$. Since integers are closed under multiplication, $s x, t y$ are integers. And since the product of two non zero integers cannot be zero, $t y \neq 0$. Thus, $a b$ is rational. This is a contradiction since we stated that $a b$ was irrational. Therefore, the original statement must be true.
(b) For all integers $n, 4 \nmid n^{2}-3$.

Solution:

Suppose for the sake of contradiction there exists an integer n such that $4 \mid\left(n^{2}-3\right)$. Then, by definition of divides, there exists an integer k such that $n^{2}-3=4 k$. We will consider two cases:
Case 1: n is even
By definition of even, there is some integer a where $n=2 a$. Substituting n into the equation above, we get $(2 a)^{2}-3=4 a^{2}-3=4 k$. By algebra,

$$
k=\frac{4 a^{2}-3}{4}=a^{2}-\frac{3}{4}
$$

Since integers are closed under multiplication, a^{2} must be an integer. Since $\frac{3}{4}$ is not an integer, k must not be an integer. This is a contradiction, since k was introduced as an integer.
Case 2: n is odd
By definition of odd, there is some integer b where $n=2 b+1$, Substituting n into the equation above, we get $(2 b+1)^{2}-3=4 b^{2}+4 b+1-3=4 k$. By algebra,

$$
k=\frac{4 b^{2}+4 b-2}{4}=b^{2}+b-\frac{1}{2}
$$

Since integers are closed under multiplication and addition, $b^{2}+b$ must be an integer. Since $\frac{1}{2}$ is not an integer, k is not an integer. This is a contradiction, since k was introduced as an integer.
As shown, all cases led to a contradiction, so the original statement must be true.

6. Prove the inequality

Prove by induction on n that for all $n \in$ the inequality $(3+\pi)^{n} \geq 3^{n}+n \pi 3^{n-1}$ is true.

Solution:

1. Let $P(n)$ be " $(3+\pi)^{n} \geq 3^{n}+n \pi 3^{n-1 " . ~ W e ~ w i l l ~ p r o v e ~} P(n)$ is true for all $n \in \mathbb{N}$, by induction.
2. Base case $(\mathrm{n}=0):(3+\pi)^{0}=1$ and $3^{0}+0 \cdot \pi \cdot 3^{-1}=1$, since $1 \geq 1, P(0)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \in \mathbb{N}$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $(3+\pi)^{k+1} \geq 3^{k+1}+(k+1) \pi 3^{(k+1)-1}=3^{k+1}+(k+1) \pi 3^{k}$

$$
\begin{array}{rlrl}
(3+\pi)^{k+1} & =(3+\pi)^{k} \cdot(3+\pi) & & \text { (Factor out }(3+\pi)) \\
& \geq\left(3^{k}+k 3^{k-1} \pi\right) \cdot(3+\pi) & (\text { By I.H., }(3+\pi) \geq 0) \\
& =3 \cdot 3^{k}+3^{k} \pi+3 k 3^{k-1} \pi+k 3^{k-1} \pi^{2} & & \text { (Distributive property) } \\
& =3^{k+1}+3^{k} \pi+k 3^{k} \pi+k 3^{k-1} \pi^{2} & \text { (Simplify) } \\
& =3^{k+1}+(k+1) 3^{k} \pi+k 3^{k-1} \pi^{2} & & (\text { Factor out }(k+1)) \\
& \geq 3^{k+1}+(k+1) \pi 3^{k} & \left(k 3^{k-1} \pi^{2} \geq 0\right)
\end{array}
$$

5. So by induction, $P(n)$ is true for all $n \in \mathbb{N}$.

7. Inductively Odd

An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and needs your help proving that it is correct.

```
public static boolean oddr(int n) {
    if (n == 0)
        return False;
    else
        return !oddr(n-1);
}
```

Help the student by writing an inductive proof to prove that for all integers $n \geq 0$, the method oddr returns True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions $\operatorname{Odd}(n):=\exists x \in \mathbb{Z}(n=2 x+1)$ and $\operatorname{Even}(n):=\exists x \in \mathbb{Z}(n=2 x) ;$ True = False and !False $=$ True.

Solution:

Let $\mathrm{P}(n)$ be " $\operatorname{oddr}(n)$ returns True if n is odd, or False if n is even". We will show that $\mathrm{P}(n)$ is true for all integers $n \geq 0$ by induction on n.

Base Case: $(\mathrm{n}=\underline{0})$
0 is even, so $P(0)$ is true if oddr(0) returns False, which is exactly the base case of oddr, so $P(0)$ is true.
Inductive Hypothesis: Suppose $\mathrm{P}(k)$ is true for an arbitrary integer $k \geq 0$.

Inductive Step:

- Case 1: $k+1$ is even.

If $k+1$ is even, then there is an integer x s.t. $k+1=2 x$, so then $k=2 x-1=2(x-1)+1$, so therefore k is odd. We know that since $k+1>0$, oddr $(k+1)$ should return $\underline{\operatorname{oddr}(\mathrm{k})}$. By the Inductive Hypothesis, we know that since k is odd, oddr(k) returns True, so oddr(k+1) returns !oddr(k)=False, and $k+1$ is even, therefore $\mathrm{P}(\mathrm{k}+1)$ is true.

- Case 2: $k+1$ is odd.

If $k+1$ is odd, then there is an integer x s.t. $k+1=2 x+1$, so then $k=2 x$ and therefore k is even. We know that since $k+1>0$, oddr $(k+1)$ should return !oddr(k). By the Inductive Hypothesis, we know that since k is even, oddr(k) returns False, so oddr(k+1) returns !oddr(k)=True, and $k+1$ is odd, therefore $P(k+1)$ is true.

Then $\mathrm{P}(k+1)$ is true for all cases. Thus, we have shown $\mathrm{P}(n)$ is true for all integers $n \geq 0$ by induction.

8. Strong Induction

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=3$
$f(2)=5$
$f(n)=2 f(n-1)-f(n-2)$
Prove using strong induction that for all $n \geq 1, f(n)=2 n+1$.

Solution:

Let $P(n)$ be the claim that $f(n)=2 n+1$. We will prove $P(n)$ for all $n \geq 1$ by strong induction.
Base case:
$f(1)=3=2 * 1+1$
$f(2)=5=2 * 2+1$
So $P(1)$ and $P(2)$ are both true.
Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 2, \mathrm{P}(2) \wedge \ldots \wedge \mathrm{P}(k)$ hold.
Inductive Step:
Goal: Prove $P(k+1)$, in other words, $f(k+1)=2(k+1)+1$

$$
\begin{aligned}
f(k+1) & =2 f(k)-f(k-1) \\
& =2(2(k)+1)-(2(k-1)-1) \quad \text { by the IH } \\
& =4 k+2-(2 k-1) \\
& =2 k+3 \\
& =2(k+1)+1
\end{aligned}
$$

Therefore, $f(k+1)=2(k+1)+1$, so $P(k+1)$ holds.
Conclusion: Therefore, $P(n)$ holds for all numbers $n \geq 1$ by strong induction.

9. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7 . Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". For example, $P(3)$ is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that $\mathrm{P}(n)$ is true for any $n \geq 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

Solution:

Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". We will prove $P(n)$ is true for all integers $n \geq 18$ by strong induction.

Base Cases: $(n=18,19,20,21)$:

- $n=18: 18$ packs of candy can be made up of 2 packs of 7 and 1 pack of $4(18=2 * 7+1 * 4)$.
- $n=19: 19$ packs of candy can be made up of 1 pack of 7 and 3 packs of $4(19=1 * 7+3 * 4)$.
- $n=20: 20$ packs of candy can be made up of 5 packs of $4(20=5 * 4)$.
- $n=21: 21$ packs of candy can be made up of 3 packs of $7(21=3 * 7)$.

Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 21, \mathrm{P}(18) \wedge \ldots \wedge \mathrm{P}(k)$ hold.

Inductive Step:

Goal: Show $P(k+1)$, i.e. show that we can buy $k+1$ packs of candy.
We want to buy $k+1$ packs of candy. By the I.H., we can buy exactly $k-3$ packs, so we can add another pack of 4 packs in order to buy $k+1$ packs of candy, so $\mathrm{P}(k+1)$ is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume $\mathrm{P}(k-3)$, and add 4 to achieve $\mathrm{P}(k+1)$. Therefore we needed to be able to assume that $k-3 \geq 18$. Adding 3 to both sides, we needed to be able to assume that $k \geq 21$. So, we have to prove the base cases up to 21 , that is: $18,19,20,21$.
Another way to think about this is that we had to use a fact from 4 steps back from $k+1$ to $k-3$ in the IS, so we needed 4 base cases.

Conclusion: So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq 18$.

