
CSE 390Z: Mathematics for Computation Workshop
Week 6 Workshop Solutions

Conceptual Review
Set Theory

(a) Definitions
Set Equality: A = B := ∀x(x ∈ A ↔ x ∈ B)
Subset: A ⊆ B := ∀x(x ∈ A → x ∈ B)
Union: A ∪B := {x : x ∈ A ∨ x ∈ B}
Intersection: A ∩B := {x : x ∈ A ∧ x ∈ B}
Set Difference: A \B = A−B := {x : x ∈ A ∧ x /∈ B}
Set Complement: A = AC := {x : x /∈ A}
Powerset: P(A) := {B : B ⊆ A}
Cartesian Product: A×B := {(a, b) : a ∈ A, b ∈ B}

(b) How do we prove that for sets A and B, A ⊆ B?

Solution:
Let x ∈ A be arbitrary... thus x ∈ B. Since x was arbitrary, A ⊆ B.

(c) How do we prove that for sets A and B, A = B?

Solution:
Use two subset proofs to show that A ⊆ B and B ⊆ A.

Set Theory

1. Set Operations
Let A = {1, 2, 5, 6, 8} and B = {2, 3, 5}.

(a) What is the set A ∩ (B ∪ {2, 8})?

Solution:
{2, 5, 8}

(b) What is the set {10} ∪ (A \B)?

Solution:
{1, 6, 8, 10}

(c) What is the set P(B)?

Solution:
{{2, 3, 5}, {2, 3}, {2, 5}, {3, 5}, {2}, {3}, {5}, ∅}

(d) How many elements are in the set A×B? List 3 of the elements.
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Solution:
15 elements, for example (1, 2), (1, 3), (1, 5).

2. Standard Set Proofs
(a) Prove that A ∩B ⊆ A ∪B for any sets A,B.

Solution:
Let x ∈ A ∩ B be arbitrary. Then by definition of intersection, x ∈ A and x ∈ B. So certainly x ∈ A
or x ∈ B (using the Elim ∧ and Intro ∨ rules). Then by definition of union, x ∈ A ∪ B. Since x was
arbitrary, A ∩B ⊆ A ∪B.

(b) Prove that A ∩ (A ∪B) = A for any sets A,B.

Solution:
⇒
Let x ∈ A ∩ (A ∪ B) be arbitrary. Then by definition of intersection, x ∈ A and x ∈ A ∪ B. So, x ∈ A
must be true (Elim ∧). Since x was arbitrary, A ∩ (A ∪B) ⊆ A.

⇐
Let x ∈ A be arbitrary. So certainly x ∈ A or x ∈ B (by the Intro ∨ rule). Then by definition of union,
x ∈ A ∪ B. Since x ∈ A and x ∈ A ∪ B, by definition of intersection, x ∈ A ∩ (A ∪ B). Since x was
arbitrary, A ⊆ A ∩ (A ∪B).

Thus we have shown that A ∩ (A ∪B) = A through two subset proofs.

(c) Prove that A ∩ (A ∪B) = A ∪ (A ∩B) for any sets A,B.

Solution:
⇒
Let x ∈ A∩ (A∪B) be arbitrary. Then by definition of intersection x ∈ A and x ∈ A∪B. Since x ∈ A,
then certainly x ∈ A or x ∈ A ∩B (Intro ∨). Then by definition of union. x ∈ A ∪ (A ∩B). Thus since
x was arbitrary, we have shown A ∩ (A ∪B) ⊆ A ∪ (A ∩B).

⇐
Let x ∈ A∪ (A∩B) be arbitrary. Then by definition of union, x ∈ A or x ∈ A∩B. Then by definition of
intersection, x ∈ A, or x ∈ A and x ∈ B. Then by distributivity, x ∈ A or x ∈ A, and x ∈ A or x ∈ B.
Then by idempotency, x ∈ A, and x ∈ A or x ∈ B. Then by definition of union, x ∈ A, and x ∈ A ∪B.
Then by definition of intersection, x ∈ A ∩ (A ∪ B). Thus since x was arbitrary, we have shown that
A ∪ (A ∩B) ⊆ A ∩ (A ∪B).

Thus we have shown A ∩ (A ∪B) = A ∪ (A ∩B) through two subset proofs.

3. Cartesian Product Proof
Write an English proof to show that A× C ⊆ (A ∪B)× (C ∪D).
Solution:
Let x ∈ A× C be arbitrary. Then x is of the form x = (y, z), where y ∈ A and z ∈ C. Then certainly y ∈ A
or y ∈ B (by the Intro ∨ rule). Then by definition of union, y ∈ (A ∪ B). Similarly, since z ∈ C, certainly
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z ∈ C or z ∈ D. Then by definition, z ∈ (C ∪D). Since x = (y, z), then x ∈ (A∪B)× (C ∪D). Since x was
arbitrary, we have shown A× C ⊆ (A ∪B)× (C ∪D).

4. Powerset Proof
Suppose that A ⊆ B. Prove that P(A) ⊆ P(B).
Solution:
Let X be an arbitrary set in P(A). By definition of power set, X ⊆ A. We need to show that X ∈ P(B), or
equivalently, that X ⊆ B. Let x ∈ X be arbitrary. Since X ⊆ A, it must be the case that x ∈ A. We were
given that A ⊆ B. By definition of subset, any element of A is an element of B. So, it must also be the case
that x ∈ B. Since x was arbitrary, we know any element of X is an element of B. By definition of subset,
X ⊆ B. By definition of power set, X ∈ P(B). Since X was an arbitrary set, any set in P(A) is in P(B), or,
by definition of subset, P(A) ⊆ P(B).

5. Proofs by Contradiction
For each part, write a proof by contradiction of the statement.

(a) If a is rational and ab is irrational, then b is irrational.

Solution:
Suppose for the sake of contradiction that this statement is false, meaning there exists an a, b where a is
rational and ab is irrational, and b is not irrational. Then, b is rational. By definition of rational, a = s

t
and b = x

y for some integers s, t, x, y where t 6= 0 and y 6= 0. Multiplying these together, we get ab = sx
ty .

Since integers are closed under multiplication, sx, ty are integers. And since the product of two non zero
integers cannot be zero, ty 6= 0. Thus, ab is rational. This is a contradiction since we stated that ab was
irrational. Therefore, the original statement must be true.

(b) For all integers n, 4 - n2 − 3.

Solution:
Suppose for the sake of contradiction there exists an integer n such that 4 | (n2 − 3). Then, by definition
of divides, there exists an integer k such that n2 − 3 = 4k. We will consider two cases:
Case 1: n is even
By definition of even, there is some integer a where n = 2a. Substituting n into the equation above, we
get (2a)2 − 3 = 4a2 − 3 = 4k. By algebra,

k =
4a2 − 3

4
= a2 − 3

4

Since integers are closed under multiplication, a2 must be an integer. Since 3
4 is not an integer, k must

not be an integer. This is a contradiction, since k was introduced as an integer.
Case 2: n is odd
By definition of odd, there is some integer b where n = 2b + 1, Substituting n into the equation above,
we get (2b+ 1)2 − 3 = 4b2 + 4b+ 1− 3 = 4k. By algebra,

k =
4b2 + 4b− 2

4
= b2 + b− 1

2

Since integers are closed under multiplication and addition, b2 + b must be an integer. Since 1
2 is not an

integer, k is not an integer. This is a contradiction, since k was introduced as an integer.
As shown, all cases led to a contradiction, so the original statement must be true.
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6. Prove the inequality
Prove by induction on n that for all n ∈ the inequality (3 + π)n ≥ 3n + nπ3n−1 is true.
Solution:

1. Let P (n) be "(3 + π)n ≥ 3n + nπ3n−1". We will prove P (n) is true for all n ∈ N, by induction.

2. Base case (n = 0): (3 + π)0 = 1 and 30 + 0 · π · 3−1 = 1, since 1 ≥ 1, P (0) is true.

3. Inductive Hypothesis: Suppose that P (k) is true for some arbitrary integer k ∈ N.

4. Inductive Step:

Goal: Show P (k+1), i.e. show (3+π)k+1 ≥ 3k+1+(k+1)π3(k+1)−1 = 3k+1+(k+1)π3k

(3 + π)k+1 = (3 + π)k · (3 + π) (Factor out (3 + π))
≥ (3k + k3k−1π) · (3 + π) (By I.H., (3 + π) ≥ 0)
= 3 · 3k + 3kπ + 3k3k−1π + k3k−1π2 (Distributive property)
= 3k+1 + 3kπ + k3kπ + k3k−1π2 (Simplify)
= 3k+1 + (k + 1)3kπ + k3k−1π2 (Factor out (k + 1))
≥ 3k+1 + (k + 1)π3k (k3k−1π2 ≥ 0)

5. So by induction, P (n) is true for all n ∈ N.
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7. Inductively Odd
An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and
needs your help proving that it is correct.

1 public static boolean oddr(int n) {
2 if (n == 0)
3 return False;
4 else
5 return !oddr(n−1);
6 }

Help the student by writing an inductive proof to prove that for all integers n ≥ 0, the method oddr returns
True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions
Odd(n) := ∃x ∈ Z(n = 2x+ 1) and Even(n) := ∃x ∈ Z(n = 2x); !True = False and !False = True.

Solution:
Let P(n) be "oddr(n) returns True if n is odd, or False if n is even". We will show that P(n) is true for all
integers n ≥ 0 by induction on n.

Base Case: (n = 0)
0 is even, so P(0) is true if oddr(0) returns False, which is exactly the base case of oddr, so P(0) is true.
Inductive Hypothesis: Suppose P(k) is true for an arbitrary integer k ≥ 0.
Inductive Step:

• Case 1: k + 1 is even.
If k+1 is even, then there is an integer x s.t. k+1 = 2x, so then k = 2x−1 = 2(x−1)+1, so therefore
k is odd. We know that since k+1 > 0, oddr(k+1) should return !oddr(k). By the Inductive Hypothesis, we
know that since k is odd, oddr(k) returns True, so oddr(k+1) returns !oddr(k)= False, and k + 1 is even,
therefore P(k+1) is true.

• Case 2: k + 1 is odd.
If k + 1 is odd, then there is an integer x s.t. k + 1 = 2x + 1, so then k = 2x and therefore k is even.
We know that since k + 1 > 0, oddr(k+1) should return !oddr(k). By the Inductive Hypothesis, we know
that since k is even, oddr(k) returns False, so oddr(k+1) returns !oddr(k)= True, and k + 1 is odd, there-
fore P(k+1) is true.

Then P(k + 1) is true for all cases. Thus, we have shown P(n) is true for all integers n ≥ 0 by induction.
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8. Strong Induction
Consider the function f(n) defined for integers n ≥ 1 as follows:
f(1) = 3
f(2) = 5
f(n) = 2f(n− 1)− f(n− 2)

Prove using strong induction that for all n ≥ 1, f(n) = 2n+ 1.

Solution:
Let P (n) be the claim that f(n) = 2n+ 1. We will prove P (n) for all n ≥ 1 by strong induction.
Base case:
f(1) = 3 = 2 ∗ 1 + 1
f(2) = 5 = 2 ∗ 2 + 1
So P (1) and P (2) are both true.
Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 2, P(2) ∧... ∧P(k) hold.
Inductive Step:

Goal: Prove P (k + 1) , in other words, f(k + 1) = 2(k + 1) + 1

f(k + 1) = 2f(k)− f(k − 1)

= 2(2(k) + 1)− (2(k − 1)− 1) by the IH
= 4k + 2− (2k − 1)

= 2k + 3

= 2(k + 1) + 1

Therefore, f(k + 1) = 2(k + 1) + 1, so P (k + 1) holds.
Conclusion: Therefore, P (n) holds for all numbers n ≥ 1 by strong induction.
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9. Strong Induction: Collecting Candy
A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy".
For example, P (3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it
turns out that P(n) is true for any n ≥ 18. Use strong induction on n to prove this.

Hint: you’ll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.
Solution:
Let P(n) be defined as "You are able to buy n packs of candy". We will prove P (n) is true for all integers
n ≥ 18 by strong induction.

Base Cases: (n = 18, 19, 20, 21):

• n = 18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18 = 2 ∗ 7 + 1 ∗ 4).
• n = 19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19 = 1 ∗ 7 + 3 ∗ 4).
• n = 20: 20 packs of candy can be made up of 5 packs of 4 (20 = 5 ∗ 4).
• n = 21: 21 packs of candy can be made up of 3 packs of 7 (21 = 3 ∗ 7).

Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 21, P(18) ∧... ∧P(k) hold.

Inductive Step:

Goal: Show P (k + 1), i.e. show that we can buy k + 1 packs of candy.

We want to buy k+1 packs of candy. By the I.H., we can buy exactly k−3 packs, so we can add another
pack of 4 packs in order to buy k + 1 packs of candy, so P(k + 1) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k−3),
and add 4 to achieve P(k + 1). Therefore we needed to be able to assume that k − 3 ≥ 18. Adding 3 to
both sides, we needed to be able to assume that k ≥ 21. So, we have to prove the base cases up to 21,
that is: 18, 19, 20, 21.
Another way to think about this is that we had to use a fact from 4 steps back from k + 1 to k − 3 in
the IS, so we needed 4 base cases.

Conclusion: So by strong induction, P(n) is true for all integers n ≥ 18.
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