Week 6 Workshop Solutions

Conceptual Review

Set Theory

(a) **Definitions**

 $\begin{array}{lll} \text{Set Equality:} & A = B := \forall x (x \in A \leftrightarrow x \in B) \\ \text{Subset:} & A \subseteq B := \forall x (x \in A \rightarrow x \in B) \\ \text{Union:} & A \cup B := \{x \, : \, x \in A \lor x \in B\} \\ \text{Intersection:} & A \cap B := \{x \, : \, x \in A \land x \in B\} \\ \text{Set Difference:} & A \setminus B = A - B := \{x \, : \, x \in A \land x \notin B\} \\ \text{Set Complement:} & \overline{A} = A^C := \{x \, : \, x \notin A\} \\ \text{Powerset:} & \mathcal{P}(A) := \{B \, : B \subseteq A\} \\ \text{Cartesian Product:} & A \times B := \{(a,b) \, : a \in A, \, b \in B\} \end{array}$

(b) How do we prove that for sets A and B, $A \subseteq B$?

Solution:

Let $x \in A$ be arbitrary... thus $x \in B$. Since x was arbitrary, $A \subseteq B$.

(c) How do we prove that for sets A and B, A = B?

Solution:

Use two subset proofs to show that $A \subseteq B$ and $B \subseteq A$.

Set Theory

1. Set Operations

Let $A = \{1, 2, 5, 6, 8\}$ and $B = \{2, 3, 5\}$.

(a) What is the set $A \cap (B \cup \{2, 8\})$?

Solution:

 $\{2, 5, 8\}$

(b) What is the set $\{10\} \cup (A \setminus B)$?

Solution:

 $\{1, 6, 8, 10\}$

(c) What is the set $\mathcal{P}(B)$?

Solution:

 $\{\{2,3,5\},\{2,3\},\{2,5\},\{3,5\},\{2\},\{3\},\{5\},\emptyset\}$

(d) How many elements are in the set $A \times B$? List 3 of the elements.

Solution:

15 elements, for example (1, 2), (1, 3), (1, 5).

2. Standard Set Proofs

(a) Prove that $A \cap B \subseteq A \cup B$ for any sets A, B.

Solution:

Let $x \in A \cap B$ be arbitrary. Then by definition of intersection, $x \in A$ and $x \in B$. So certainly $x \in A$ or $x \in B$ (using the Elim \land and Intro \lor rules). Then by definition of union, $x \in A \cup B$. Since x was arbitrary, $A \cap B \subseteq A \cup B$.

(b) Prove that $A \cap (A \cup B) = A$ for any sets A, B.

Solution:

 \Rightarrow

Let $x \in A \cap (A \cup B)$ be arbitrary. Then by definition of intersection, $x \in A$ and $x \in A \cup B$. So, $x \in A$ must be true (Elim \land). Since x was arbitrary, $A \cap (A \cup B) \subseteq A$.

 \Leftarrow

Let $x \in A$ be arbitrary. So certainly $x \in A$ or $x \in B$ (by the Intro \lor rule). Then by definition of union, $x \in A \cup B$. Since $x \in A$ and $x \in A \cup B$, by definition of intersection, $x \in A \cap (A \cup B)$. Since x was arbitrary, $A \subseteq A \cap (A \cup B)$.

Thus we have shown that $A \cap (A \cup B) = A$ through two subset proofs.

(c) Prove that $A \cap (A \cup B) = A \cup (A \cap B)$ for any sets A, B.

Solution:

 \Rightarrow

Let $x \in A \cap (A \cup B)$ be arbitrary. Then by definition of intersection $x \in A$ and $x \in A \cup B$. Since $x \in A$, then certainly $x \in A$ or $x \in A \cap B$ (Intro \lor). Then by definition of union. $x \in A \cup (A \cap B)$. Thus since x was arbitrary, we have shown $A \cap (A \cup B) \subseteq A \cup (A \cap B)$.

 \Leftarrow

Let $x \in A \cup (A \cap B)$ be arbitrary. Then by definition of union, $x \in A$ or $x \in A \cap B$. Then by definition of intersection, $x \in A$, or $x \in A$ and $x \in B$. Then by distributivity, $x \in A$ or $x \in A$, and $x \in A$ or $x \in B$. Then by idempotency, $x \in A$, and $x \in A$ or $x \in B$. Then by definition of union, $x \in A$, and $x \in A \cup B$. Then by definition of intersection, $x \in A \cap (A \cup B)$. Thus since x was arbitrary, we have shown that $A \cup (A \cap B) \subseteq A \cap (A \cup B)$.

Thus we have shown $A \cap (A \cup B) = A \cup (A \cap B)$ through two subset proofs.

3. Cartesian Product Proof

Write an English proof to show that $A \times C \subseteq (A \cup B) \times (C \cup D)$.

Solution:

Let $x \in A \times C$ be arbitrary. Then x is of the form x = (y, z), where $y \in A$ and $z \in C$. Then certainly $y \in A$ or $y \in B$ (by the Intro \lor rule). Then by definition of union, $y \in (A \cup B)$. Similarly, since $z \in C$, certainly

 $z \in C$ or $z \in D$. Then by definition, $z \in (C \cup D)$. Since x = (y, z), then $x \in (A \cup B) \times (C \cup D)$. Since x was arbitrary, we have shown $A \times C \subseteq (A \cup B) \times (C \cup D)$.

4. Powerset Proof

Suppose that $A \subseteq B$. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Solution:

Let X be an arbitrary set in $\mathcal{P}(A)$. By definition of power set, $X \subseteq A$. We need to show that $X \in \mathcal{P}(B)$, or equivalently, that $X \subseteq B$. Let $x \in X$ be arbitrary. Since $X \subseteq A$, it must be the case that $x \in A$. We were given that $A \subseteq B$. By definition of subset, any element of A is an element of B. So, it must also be the case that $x \in B$. Since x was arbitrary, we know any element of X is an element of B. By definition of subset, $X \subseteq B$. By definition of power set, $X \in \mathcal{P}(B)$. Since X was an arbitrary set, any set in $\mathcal{P}(A)$ is in $\mathcal{P}(B)$, or, by definition of subset, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

5. Proofs by Contradiction

For each part, write a proof by contradiction of the statement.

(a) If a is rational and ab is irrational, then b is irrational.

Solution:

Suppose for the sake of contradiction that this statement is false, meaning there exists an a, b where a is rational and ab is irrational, and b is not irrational. Then, b is rational. By definition of rational, $a = \frac{s}{t}$ and $b = \frac{x}{y}$ for some integers s, t, x, y where $t \neq 0$ and $y \neq 0$. Multiplying these together, we get $ab = \frac{sx}{ty}$. Since integers are closed under multiplication, sx, ty are integers. And since the product of two non zero integers cannot be zero, $ty \neq 0$. Thus, ab is rational. This is a contradiction since we stated that ab was irrational. Therefore, the original statement must be true.

(b) For all integers n, $4 \nmid n^2 - 3$.

Solution:

Suppose for the sake of contradiction there exists an integer n such that $4 \mid (n^2 - 3)$. Then, by definition of divides, there exists an integer k such that $n^2 - 3 = 4k$. We will consider two cases:

Case 1: n is even

By definition of even, there is some integer a where n = 2a. Substituting n into the equation above, we get $(2a)^2 - 3 = 4a^2 - 3 = 4k$. By algebra,

$$k = \frac{4a^2 - 3}{4} = a^2 - \frac{3}{4}$$

Since integers are closed under multiplication, a^2 must be an integer. Since $\frac{3}{4}$ is not an integer, k must not be an integer. This is a contradiction, since k was introduced as an integer.

Case 2: n is odd

By definition of odd, there is some integer b where n = 2b + 1, Substituting n into the equation above, we get $(2b + 1)^2 - 3 = 4b^2 + 4b + 1 - 3 = 4k$. By algebra,

$$k = \frac{4b^2 + 4b - 2}{4} = b^2 + b - \frac{1}{2}$$

Since integers are closed under multiplication and addition, $b^2 + b$ must be an integer. Since $\frac{1}{2}$ is not an integer, k is not an integer. This is a contradiction, since k was introduced as an integer.

As shown, all cases led to a contradiction, so the original statement must be true.

6. Prove the inequality

Prove by induction on n that for all $n \in$ the inequality $(3 + \pi)^n \ge 3^n + n\pi 3^{n-1}$ is true. Solution:

- 1. Let P(n) be " $(3 + \pi)^n \ge 3^n + n\pi 3^{n-1}$ ". We will prove P(n) is true for all $n \in \mathbb{N}$, by induction.
- 2. Base case (n = 0): $(3 + \pi)^0 = 1$ and $3^0 + 0 \cdot \pi \cdot 3^{-1} = 1$, since $1 \ge 1$, P(0) is true.
- 3. Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \in \mathbb{N}$.
- 4. Inductive Step:

Goal: Show P(k+1), i.e. show $(3+\pi)^{k+1} \ge 3^{k+1} + (k+1)\pi 3^{(k+1)-1} = 3^{k+1} + (k+1)\pi 3^k$

$$\begin{aligned} (3+\pi)^{k+1} &= (3+\pi)^k \cdot (3+\pi) & (Factor out (3+\pi)) \\ &\geq (3^k + k3^{k-1}\pi) \cdot (3+\pi) & (By I.H., (3+\pi) \ge 0) \\ &= 3 \cdot 3^k + 3^k \pi + 3k3^{k-1}\pi + k3^{k-1}\pi^2 & (Distributive property) \\ &= 3^{k+1} + 3^k \pi + k3^k \pi + k3^{k-1}\pi^2 & (Simplify) \\ &= 3^{k+1} + (k+1)3^k \pi + k3^{k-1}\pi^2 & (Factor out (k+1)) \\ &\geq 3^{k+1} + (k+1)\pi 3^k & (k3^{k-1}\pi^2 \ge 0) \end{aligned}$$

5. So by induction, P(n) is true for all $n \in \mathbb{N}$.

7. Inductively Odd

An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and needs your help proving that it is correct.

```
public static boolean oddr(int n) {
    if (n == 0)
        return False;
    else
        return !oddr(n-1);
}
```

Help the student by writing an inductive proof to prove that for all integers $n \ge 0$, the method oddr returns True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions $Odd(n) := \exists x \in \mathbb{Z}(n = 2x + 1)$ and $Even(n) := \exists x \in \mathbb{Z}(n = 2x)$; !True = False and !False = True.

Solution:

Let P(n) be "oddr(n) returns True if n is odd, or False if n is even". We will show that P(n) is true for all integers $n \ge 0$ by induction on n.

Base Case: $(n = \underline{0})$

0 is even, so P(0) is true if oddr(0) returns False, which is exactly the base case of oddr, so P(0) is true. Inductive Hypothesis: Suppose P(k) is true for an arbitrary integer $k \ge 0$. Inductive Step:

• **Case 1:** *k* + 1 is even.

If k+1 is even, then there is an integer x s.t. k+1 = 2x, so then k = 2x - 1 = 2(x-1) + 1, so therefore \underline{k} is odd. We know that since k+1 > 0, oddr(k+1) should return $\underline{!oddr(k)}$. By the Inductive Hypothesis, we know that since k is odd, oddr(k) returns True, so oddr(k+1) returns $\underline{!oddr(k)} = False$, and k+1 is even, therefore P(k+1) is true.

• Case 2: k + 1 is odd.

If k + 1 is odd, then there is an integer x s.t. k + 1 = 2x + 1, so then k = 2x and therefore <u>k is even</u>. We know that since k + 1 > 0, oddr(k+1) should return <u>loddr(k)</u>. By the Inductive Hypothesis, we know that since k is even, oddr(k) returns False, so oddr(k+1) returns <u>loddr(k)</u> True, and k + 1 is odd, therefore P(k+1) is true.

Then P(k+1) is true for all cases. Thus, we have shown P(n) is true for all integers $n \ge 0$ by induction.

8. Strong Induction

Consider the function f(n) defined for integers $n \ge 1$ as follows: f(1) = 3 f(2) = 5 f(n) = 2f(n-1) - f(n-2)Prove using strong induction that for all $n \ge 1$, f(n) = 2n + 1.

Solution:

Let P(n) be the claim that f(n) = 2n + 1. We will prove P(n) for all $n \ge 1$ by strong induction. Base case:

 $\begin{array}{l} f(1) = 3 = 2 * 1 + 1 \\ f(2) = 5 = 2 * 2 + 1 \\ \text{So } P(1) \text{ and } P(2) \text{ are both true.} \end{array}$

Inductive Hypothesis: Suppose for some arbitrary integer $k \ge 2$, $P(2) \land ... \land P(k)$ hold. **Inductive Step:**

Goal: Prove P(k+1), in other words, f(k+1) = 2(k+1) + 1

$$\begin{split} f(k+1) &= 2f(k) - f(k-1) \\ &= 2(2(k)+1) - (2(k-1)-1) \\ &= 4k+2 - (2k-1) \\ &= 2k+3 \\ &= 2(k+1)+1 \end{split} \label{eq:generalized_states}$$
 by the IH

Therefore, f(k+1) = 2(k+1) + 1, so P(k+1) holds. Conclusion: Therefore, P(n) holds for all numbers $n \ge 1$ by strong induction.

9. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy". For example, P(3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that P(n) is true for any $n \ge 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

Solution:

Let P(n) be defined as "You are able to buy n packs of candy". We will prove P(n) is true for all integers $n \ge 18$ by strong induction.

Base Cases: (n = 18, 19, 20, 21):

- n = 18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18 = 2 * 7 + 1 * 4).
- n = 19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19 = 1 * 7 + 3 * 4).
- n = 20: 20 packs of candy can be made up of 5 packs of 4 (20 = 5 * 4).
- n = 21: 21 packs of candy can be made up of 3 packs of 7 (21 = 3 * 7).

Inductive Hypothesis: Suppose for some arbitrary integer $k \ge 21$, $P(18) \land \dots \land P(k)$ hold.

Inductive Step:

Goal: Show P(k+1), i.e. show that we can buy k+1 packs of candy.

We want to buy k+1 packs of candy. By the I.H., we can buy exactly k-3 packs, so we can add another pack of 4 packs in order to buy k+1 packs of candy, so P(k+1) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k-3), and add 4 to achieve P(k+1). Therefore we needed to be able to assume that $k-3 \ge 18$. Adding 3 to both sides, we needed to be able to assume that $k \ge 21$. So, we have to prove the base cases up to 21, that is: 18, 19, 20, 21.

Another way to think about this is that we had to use a fact from 4 steps back from k + 1 to k - 3 in the IS, so we needed 4 base cases.

Conclusion: So by strong induction, P(n) is true for all integers $n \ge 18$.