CSE 390Z: Mathematics for Computation Workshop

Week 5 Conceptual Review Solutions

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=3$
$f(2)=5$
$f(n)=2 f(n-1)-f(n-2)$
Prove using strong induction that for all $n \geq 1, f(n)=2 n+1$.
Fill out the induction proof below:

Solution:

Let $P(n)$ be the claim that $f(n)=2 n+1$. We will prove $P(n)$ for all $n \geq 1$ by strong induction.
Base case:
$f(1)=3=2 * 1+1$
$f(2)=5=2 * 2+1$
So $P(1)$ and $P(2)$ are both true.
Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 2, \mathrm{P}(2) \wedge \ldots \wedge \mathrm{P}(k)$ hold. Inductive Step:

Goal: Prove $P(k+1)$, in other words, $f(k+1)=2(k+1)+1$

$$
\begin{aligned}
f(k+1) & =2 f(k)-f(k-1) \\
& =2(2(k)+1)-(2(k-1)-1) \\
& =4 k+2-(2 k-1) \\
& =2 k+3 \\
& =2(k+1)+1
\end{aligned} \quad \text { by the IH }
$$

Therefore, $f(k+1)=2(k+1)+1$, so $P(k+1)$ holds.
Conclusion: Therefore, $P(n)$ holds for all numbers $n \geq 1$ by strong induction.

