CSE 390Z: Mathematics of Computing Workshop

Week 8 Workshop

0. Conceptual Review

(a) Regular expression rules:

Basis: ϵ, \varnothing, a for $a \in \Sigma$
Recursive: If A, B are regular expressions, $(A \cup B), A B$, and A^{*} are regular expressions.
(b) Types of functions:

One-to-one/Injection: A function f is one-to-one iff $\forall a \forall b((f(a)=f(b) \rightarrow a=b)$
Onto/Surjection: A function $f: A \rightarrow B$ is onto iff $\forall b \in B \exists a \in A(b=f(a))$
Bijection: A function $f: A \rightarrow B$ is a bijection if it is one-on-one and onto.

1. Regular Expressions Warmup

Consider the following Regular Expression (RegEx):

$$
1(45 \cup 54)^{\star} 1
$$

List 5 strings accepted by the RegEx and 5 strings from $T:=\{1,4,5\}^{\star}$ rejected by the RegEx. Then, summarize this RegEx in your own words.

2. Context Free Grammars Warmup

Consider the following CFG which generates strings from the language $\mathrm{V}:=\{0,1,2,3,4\}^{*}$

$$
\begin{aligned}
& \mathbf{S} \rightarrow 0 \mathbf{X} 4 \\
& \mathbf{X} \rightarrow 1 \mathbf{X} 3 \mid 2
\end{aligned}
$$

List 5 strings generated by the CFG and 5 strings from V not generated by the CFG. Then, summarize this CFG in your own words.

3. Simplify the RegEx

Consider the following Regular Expression (RegEx):

$$
0^{\star}(0 \cup 1)^{\star}((01) \cup(11) \cup(10) \cup(00)) 1^{\star}(0 \cup 1)^{\star}
$$

List 3 strings accepted by the RegEx and 3 strings from $S:=\{0,1\}^{\star}$ rejected by the RegEx. Then, summarize this RegEx in your own words and write a simpler RegEx that accepts exactly the same set of strings.

4. Constructing RegExs and CFGs

For each of the following, construct a regular expression and CFG for the specified language.
(a) Strings from the language $S:=\{a\}^{*}$ with an even number of a 's.
(b) Strings from the language $S:=\{a, b\}^{*}$ with an even number of a 's.
(c) Strings from the language $S:=\{a, b\}^{*}$ with odd length.
(d) (Challenge) Strings from the language $S:=\{a, b\}^{*}$ with an even number of a 's or an odd number of b 's.

5. Structural Induction: CFGs

Consider the following CFG:

$$
S \rightarrow S S|0 S 1| 1 S 0 \mid \epsilon
$$

Prove that every string generated by this CFG has an equal number of 1 's and 0 's.
Hint 1: Start by converting this CFG to a recursively defined set.
Hint 2: You may wish to define the functions $\#_{0}(x), \#_{1}(x)$ on a string x.

6. Constructing DFAs

For each of the following, construct a DFA for the specified language.
(a) Strings from the language $\Sigma:=\{a\}^{*}$ with an even number of a 's.
(b) Strings from the language $\Sigma=\{a, b\}$ with odd length.
(c) Strings from the language $\Sigma=\{a, b\}$ with an even number of a 's or an odd number of b 's.

