Week 7 Workshop

0. Structural Induction: Divisible by 4

Define a set ${\mathfrak B}$ of numbers by:

- 4 and 12 are in $\mathfrak B$
- If $x \in \mathfrak{B}$ and $y \in \mathfrak{B}$, then $x + y \in \mathfrak{B}$ and $x y \in \mathfrak{B}$

Prove by induction that every number in ${\mathfrak B}$ is divisible by 4. Complete the proof below:

Let P(n) be defined as _____. We will prove P(n) is true for all _____ by structural induction.

Base Cases:

So	the	base	cases	holds.	

Inductive Hypothesis: Suppose _____.

Inductive Step:

Goal: Show	
	-

Conclusion: So by induction, P(n) is true for all _____.

1. Structural Induction: a's and b's

Define a set S of character strings over the alphabet $\{a, b\}$ by:

- a and ab are in ${\mathcal S}$
- If $x \in S$ and $y \in S$, then $axb \in S$ and $xy \in S$

Prove by induction that every string in S has at least as many a's as it does b's.

2. Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are **CharTrees** and $c \in \Sigma$, then CharTree(L, c, R) is also a **CharTree**

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

The preorder function returns the preorder traversal of all elements in a CharTree.

 $\begin{array}{ll} {\tt preorder(Null)} & = \varepsilon \\ {\tt preorder(CharTree}(L,c,R)) & = c \cdot {\tt preorder}(L) \cdot {\tt preorder}(R) \end{array}$

The postorder function returns the postorder traversal of all elements in a CharTree.

 $\begin{array}{ll} \mathsf{postorder}(\mathtt{Null}) & = \varepsilon \\ \mathsf{postorder}(\mathtt{CharTree}(L,c,R)) & = \mathsf{postorder}(L) \cdot \mathsf{postorder}(R) \cdot c \end{array}$

• The mirror function produces the mirror image of a **CharTree**.

 $\begin{array}{ll} \mathsf{mirror}(\mathtt{Null}) & = \mathtt{Null} \\ \mathsf{mirror}(\mathtt{CharTree}(L,c,R)) & = \mathtt{CharTree}(\mathsf{mirror}(R),c,\mathsf{mirror}(L)) \\ \end{array}$

• Finally, for all strings x, let the "reversal" of x (in symbols x^R) produce the string in reverse order.

Additional Facts:

You may use the following facts:

- For any strings $x_1, ..., x_k$: $(x_1 \cdot ... \cdot x_k)^R = x_k^R \cdot ... \cdot x_1^R$
- For any character c, $c^R = c$

Statement to Prove:

Show that for every **CharTree** T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every **CharTree**, T: $[preorder(T)]^R = postorder(mirror(T))$.

There is an example and space to work on the next page.

Example for Intuition:

Let T_i be the tree above. $(T_i) =$ "abcd". T_i is built as (null, a, U)Where U is (V, b, W), V = (null, c, null), W = (null, d, null).

This tree is (T_i) . $((T_i)) =$ "dcba", "dcba" is the reversal of "abcd" so $[preorder(T_i)]^R = postorder(mirror(T_i))$ holds for T_i