Week 7 Workshop

0. Structural Induction: Divisible by 4

Define a set \mathfrak{B} of numbers by:

- 4 and 12 are in \mathfrak{B}
- If $x \in \mathfrak{B}$ and $y \in \mathfrak{B}$, then $x+y \in \mathfrak{B}$ and $x-y \in \mathfrak{B}$

Prove by induction that every number in \mathfrak{B} is divisible by 4 .

Complete the proof below:

Let $\mathrm{P}(n)$ be defined as \qquad . We will prove $P(n)$ is true for all \qquad by structural induction.

Base Cases:

So the base cases holds.
Inductive Hypothesis: Suppose \qquad .

Inductive Step:

Goal: Show

Conclusion: So by induction, $\mathrm{P}(n)$ is true for all \qquad -

1. Structural Induction: a's and b's

Define a set \mathcal{S} of character strings over the alphabet $\{a, b\}$ by:

- a and $a b$ are in \mathcal{S}
- If $x \in \mathcal{S}$ and $y \in \mathcal{S}$, then $a x b \in \mathcal{S}$ and $x y \in \mathcal{S}$

Prove by induction that every string in \mathcal{S} has at least as many a 's as it does b 's.

2. Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are CharTrees and $c \in \Sigma$, then $\operatorname{CharTree}(L, c, R)$ is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

- The preorder function returns the preorder traversal of all elements in a CharTree.

$$
\begin{array}{ll}
\operatorname{preorder}(\operatorname{Null}) & =\varepsilon \\
\operatorname{preorder}(\operatorname{CharTree}(L, c, R)) & =c \cdot \operatorname{preorder}(L) \cdot \operatorname{preorder}(R)
\end{array}
$$

- The postorder function returns the postorder traversal of all elements in a CharTree.

```
postorder(Null) =\varepsilon
postorder(CharTree (L,c,R)) = postorder (L) \cdot postorder (R) \cdotc
```

- The mirror function produces the mirror image of a CharTree.

$$
\begin{array}{ll}
\operatorname{mirror}(\operatorname{Null}) & =\operatorname{Null} \\
\operatorname{mirror}(\operatorname{CharTree}(L, c, R)) & =\operatorname{CharTree}(\operatorname{mirror}(R), c, \operatorname{mirror}(L))
\end{array}
$$

- Finally, for all strings x, let the "reversal" of x (in symbols x^{R}) produce the string in reverse order.

Additional Facts:

You may use the following facts:

- For any strings $x_{1}, \ldots, x_{k}:\left(x_{1} \cdot \ldots \cdot x_{k}\right)^{R}=x_{k}^{R} \cdot \ldots \cdot x_{1}^{R}$
- For any character $c, c^{R}=c$

Statement to Prove:

Show that for every CharTree T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every CharTree, T : $[\operatorname{preorder}(T)]^{R}=$ postorder(mirror $(T))$.

There is an example and space to work on the next page.

Example for Intuition:

Let T_{i} be the tree above.
(T_{i}) ="abcd".
T_{i} is built as (null, a, U)
Where U is (V, b, W),
$V=($ null,c, null $), W=(n u l l, d$, null $)$.

This tree is $\left(T_{i}\right)$.
$\left(\left(T_{i}\right)\right)=$ "dcba",
"dcba" is the reversal of "abcd" so
$\left[\operatorname{preorder}\left(T_{i}\right)\right]^{R}=\operatorname{postorder}\left(\operatorname{mirror}\left(T_{i}\right)\right)$ holds for T_{i}

