Week 6 Workshop

Conceptual Review

Set Theory
(a) Definitions

Set Equality: $\quad A=B:=\forall x(x \in A \leftrightarrow x \in B)$
Subset: $A \subseteq B:=\forall x(x \in A \rightarrow x \in B)$
Union: $A \cup B:=\{x: x \in A \vee x \in B\}$
Intersection: $A \cap B:=\{x: x \in A \wedge x \in B\}$
Set Difference: $A \backslash B=A-B:=\{x: x \in A \wedge x \notin B\}$
Set Complement: $\bar{A}=A^{C}:=\{x: x \notin A\}$
Powerset: $\mathcal{P}(A):=\{B: B \subseteq A\}$
Cartesian Product: $A \times B:=\{(a, b): a \in A, b \in B\}$
(b) How do we prove that for sets A and $B, A \subseteq B$?
(c) How do we prove that for sets A and $B, A=B$?

Set Theory

1. Set Operations

Let $A=\{1,2,5,6,8\}$ and $B=\{2,3,5\}$.
(a) What is the set $A \cap(B \cup\{2,8\})$?
(b) What is the set $\{10\} \cup(A \backslash B)$?
(c) What is the set $\mathcal{P}(B)$?
(d) How many elements are in the set $A \times B$? List 3 of the elements.

2. Standard Set Proofs

(a) Prove that $A \cap B \subseteq A \cup B$ for any sets A, B.
(b) Prove that $A \cap(A \cup B)=A$ for any sets A, B.
(c) Prove that $A \cap(A \cup B)=A \cup(A \cap B)$ for any sets A, B.

3. Cartesian Product Proof

Write an English proof to show that $A \times C \subseteq(A \cup B) \times(C \cup D)$.

4. Powerset Proof

Suppose that $A \subseteq B$. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

5. Proofs by Contradiction

For each part, write a proof by contradiction of the statement.
(a) If a is rational and $a b$ is irrational, then b is irrational.
(b) For all integers $n, 4 \nmid n^{2}-3$.

6. Prove the inequality

Prove by induction on n that for all $n \in$ the inequality $(3+\pi)^{n} \geq 3^{n}+n \pi 3^{n-1}$ is true.

7. Inductively Odd

An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and needs your help proving that it is correct.

```
public static boolean oddr(int n) {
    if (n == 0)
        return False;
    else
        return !oddr(n-1);
}
```

Help the student by writing an inductive proof to prove that for all integers $n \geq 0$, the method oddr returns True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions $\operatorname{Odd}(n):=\exists x \in \mathbb{Z}(n=2 x+1)$ and $\operatorname{Even}(n):=\exists x \in \mathbb{Z}(n=2 x) ;!$ True $=$ False and !False = True.

8. Strong Induction

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=3$
$f(2)=5$
$f(n)=2 f(n-1)-f(n-2)$
Prove using strong induction that for all $n \geq 1, f(n)=2 n+1$.

9. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7 . Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". For example, $P(3)$ is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that $\mathrm{P}(n)$ is true for any $n \geq 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

