Week 6 Workshop

Conceptual Review

Set Theory

(a) **Definitions**

- (b) How do we prove that for sets A and B, $A \subseteq B$?
- (c) How do we prove that for sets A and B, A = B?

Set Theory

1. Set Operations

Let $A = \{1, 2, 5, 6, 8\}$ and $B = \{2, 3, 5\}$.

(a) What is the set $A \cap (B \cup \{2, 8\})$?

(b) What is the set $\{10\} \cup (A \setminus B)$?

(c) What is the set $\mathcal{P}(B)$?

(d) How many elements are in the set $A \times B$? List 3 of the elements.

2. Standard Set Proofs

(a) Prove that $A \cap B \subseteq A \cup B$ for any sets A, B.

(b) Prove that $A \cap (A \cup B) = A$ for any sets A, B.

(c) Prove that $A \cap (A \cup B) = A \cup (A \cap B)$ for any sets A, B.

3. Cartesian Product Proof

Write an English proof to show that $A \times C \subseteq (A \cup B) \times (C \cup D)$.

4. Powerset Proof

Suppose that $A \subseteq B$. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

5. Proofs by Contradiction

For each part, write a proof by contradiction of the statement.

(a) If a is rational and ab is irrational, then b is irrational.

(b) For all integers n, $4 \nmid n^2 - 3$.

6. Prove the inequality Prove by induction on n that for all $n \in$ the inequality $(3 + \pi)^n \ge 3^n + n\pi 3^{n-1}$ is true.

7. Inductively Odd

An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and needs your help proving that it is correct.

```
public static boolean oddr(int n) {
    if (n == 0)
        return False;
    else
        return !oddr(n-1);
}
```

Help the student by writing an inductive proof to prove that for all integers $n \ge 0$, the method oddr returns True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions $Odd(n) := \exists x \in \mathbb{Z}(n = 2x + 1)$ and $Even(n) := \exists x \in \mathbb{Z}(n = 2x)$; !True = False and !False = True.

8. Strong Induction

Consider the function f(n) defined for integers $n \ge 1$ as follows: f(1) = 3 f(2) = 5 f(n) = 2f(n-1) - f(n-2)Prove using strong induction that for all $n \ge 1$, f(n) = 2n + 1.

9. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy". For example, P(3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that P(n) is true for any $n \ge 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.