CSE 390Z: Mathematics for Computation Workshop

Week 5 Conceptual Review

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=3$
$f(2)=5$
$f(n)=2 f(n-1)-f(n-2)$
Prove using strong induction that for all $n \geq 1, f(n)=2 n+1$.
Fill out the induction proof below:
Let $\mathrm{P}(n)$ be defined as \qquad . We will prove $P(n)$ is true for all integers $n \geq$ \qquad by strong induction.

Base Cases:

So the base cases hold.
Inductive Hypothesis: Suppose for some arbitrary integer $k \geq$ \qquad , $\mathrm{P}(j)$ is true for $1 \leq j \leq k$.

Inductive Step:
Goal: Show $P(k+1)$, i.e. show that $f(k+1)=2(k+1)+1$.

$$
\begin{aligned}
f(k+1) & =2 f((k+1)-1)-f((k+1)-2) & & \text { Definition of } \mathrm{f} \\
& =2 f(k)-f(k-1) & & \text { Algebra } \\
& = & &
\end{aligned}
$$

So $\mathrm{P}(k+1)$ holds.
Conclusion: So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq$ \qquad .

