CSE 390Z: Mathematics for Computation Workshop

Week 5 Conceptual Review

Consider the function f(n) defined for integers $n \ge 1$ as follows: f(1) = 3 f(2) = 5 f(n) = 2f(n-1) - f(n-2)Prove using strong induction that for all $n \ge 1$, f(n) = 2n + 1. **Fill out the induction proof below:**

Let P(n) be defined as _____. We will prove P(n) is true for all integers $n \ge _____$ by strong induction.

Base Cases:

So the base cases hold.

Inductive Hypothesis: Suppose for some arbitrary integer $k \ge$ ____, P(j) is true for $1 \le j \le k$. Inductive Step:

Goal: Show P(k+1), i.e. show that f(k+1) = 2(k+1)+1.

$$f(k+1) = 2f((k+1)-1) - f((k+1)-2)$$

= 2f(k) - f(k-1)
= Algebra

So P(k+1) holds.

Conclusion: So by strong induction, P(n) is true for all integers $n \ge$ _____.