CSE 390Z: Mathematics for Computation Workshop

Practice 311 Midterm Solutions

Name: \qquad

UW ID: \qquad

Instructions:

- This is a simulated practice midterm. You will not be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 4 problems on this exam, totaling 70 points.

1. Predicate Translation [20 points]

Let the domain of discourse be animals. Translate the following statements to predicate logic, using the following predicates:
$\operatorname{Bird}(x):=x$ is a bird
CanFly $(x):=x$ can fly
Loves $(x, y):=x$ loves y
(a) (5 points) There is a bird that loves itself.

Solution:

$\exists x(\operatorname{Bird}(x) \wedge \operatorname{Loves}(x, x))$
(b) (5 points) All flightless birds love a bird that can fly (the bird being loved can be different for each flightless bird).

Solution:

$\forall x(\neg \operatorname{CanFly}(x) \wedge \operatorname{Bird}(x) \rightarrow \exists y(\operatorname{Bird}(y) \wedge \operatorname{CanFly}(y) \wedge \operatorname{Loves}(x, y))$
(c) (5 points) Every bird loves exactly one non bird.

Solution:

$\forall x(\operatorname{Bird}(x) \rightarrow \exists y(\neg \operatorname{Bird}(y) \wedge \operatorname{Loves}(x, y) \wedge \forall z((z \neq y \wedge \neg \operatorname{Bird}(z)) \rightarrow \neg \operatorname{Loves}(x, z))))$
OR
$\forall x(\operatorname{Bird}(x) \rightarrow \exists y(\neg \operatorname{Bird}(y) \wedge \operatorname{Loves}(x, y) \wedge \forall z(\operatorname{Loves}(x, z) \rightarrow(\operatorname{Bird}(z) \vee z=y))))$
OR
$\forall x(\operatorname{Bird}(x) \rightarrow \exists y(\neg \operatorname{Bird}(y) \wedge \operatorname{Loves}(x, y) \wedge \forall z((\operatorname{Loves}(x, z) \wedge \neg \operatorname{Bird}(z)) \rightarrow z=y)))$
*Note that a great exercise is to show that the above 3 solutions are all logically equivalent :)
(d) (5 points) Translate the following into English:
$\exists x \forall y(\operatorname{Bird}(x) \wedge(\operatorname{CanFly}(y) \rightarrow \operatorname{Loves}(x, y))$

Solution:

There is a bird that loves all flying animals.

2. Number Theory Proof [20 points]

Prove the following statement using an English proof:
The square of every odd integer can be written in the form $8 k+1$ for some integer k.
Hint: You may want to use proof by cases for this problem.

Solution:

Let n be an arbitrary odd integer.
We want to show that n^{2} can be written in the form $8 k+1$ for some integer k. In other words, we want to show $n^{2}=8 k+1$. Rearranging this equation, we get $n^{2}-1=8 k$.
By definition of odd, $n=2 j+1$ for some integer j. Then, $n^{2}-1=4 j^{2}+4 j+1-1=4\left(j^{2}+j\right)$. At this point, consider two cases:

- Case 1: j is even.

By definition of even, $j=2 x$ for some integer x. Then

$$
\begin{aligned}
j^{2}+j & =(2 x)^{2}+(2 x) \\
& =4 x^{2}+2 x \\
& =2\left(2 x^{2}+x\right)
\end{aligned}
$$

Plugging this into the above equation, we get

$$
n^{2}-1=4\left(2\left(2 x^{2}+x\right)\right)=8\left(2 x^{2}+x\right)
$$

Let $k=2 x^{2}+x$. Then

$$
n^{2}=8 k+1
$$

Since x is an integer, $2 x^{2}+x$ must be an integer. So, there exists an integer k such that we can write $n^{2}=8 k+1$.

- Case 2: j is odd. By definition of odd, $j=2 x+1$ for some integer x. Then

$$
\begin{aligned}
j^{2}+j & =(2 x+1)^{2}+(2 x+1) \\
& =4 x^{2}+4 x+1+2 x+1 \\
& =4 x^{2}+6 x+2 \\
& =2\left(2 x^{2}+3 x+1\right)
\end{aligned}
$$

Plugging this into the above equation, we get

$$
n^{2}-1=4\left(2\left(2 x^{2}+3 x+1\right)\right)=8\left(2 x^{2}+3 x+1\right)
$$

Let $k=2 x^{2}+3 x+1$. Then

$$
n^{2}=8 k+1
$$

Since x is an integer, $2 x^{2}+3 x+1$ must be an integer. So, there exists an integer k such that we can write $n^{2}=8 k+1$.

In all cases, we were able to write n^{2} in the form $8 k+1$. Since n was an arbitrary odd integer, this proves the original claim.

3. Induction [20 points]

Recall the Fibonacci sequence: $f_{0}=0, f_{1}=1$, and $f_{n}=f_{n-1}+f_{n-2}$ for all $n \geq 2$.
Prove that $f_{n+1}<\left(\frac{7}{4}\right)^{n}$ for all $n \geq 1$.
Hint: To prove a < inequality, start with the left side of the inequality and use algebra + your inductive hypothesis to show that it is less than the right side.

Solution:

1. Let $P(n)$ be $f_{n+1}<\left(\frac{7}{4}\right)^{n}$. We will prove $P(n)$ true for all integers $n \geq 1$ by strong induction.

2. Base Cases

- $n=1: f_{1+1}=f_{2}=f_{1}+f_{0}=1+0=1<\frac{7}{4}=\left(\frac{7}{4}\right)^{1}$, so $P(1)$ holds.
- $n=2: f_{2+1}=f_{3}=f_{2}+f_{1}=1+1=2<\frac{49}{16}=\left(\frac{7}{4}\right)^{2}$, using the fact that $f_{2}=1$ from above. So, $P(2)$ holds.

3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 2, P(j)$ holds for all $2 \leq j \leq k$.
4. Inductive Step:

$$
\text { Goal: Show } P(k+1) \text {, i.e. show } f_{(k+1)+1}<\left(\frac{7}{4}\right)^{k+1}
$$

$$
\begin{array}{rlr}
f_{(k+1)+1} & =f_{k+1}+f_{k} & \text { Def Fibonacci } \\
& <\left(\frac{7}{4}\right)^{k}+\left(\frac{7}{4}\right)^{k-1} & \text { I.H. } \\
& =\left(\frac{7}{4}\right)^{k} \cdot\left[1+\left(\frac{7}{4}\right)^{-1}\right] & \text { Factor out }\left(\frac{7}{4}\right)^{k} \text { term } \\
& =\left(\frac{7}{4}\right)^{k}\left(\frac{11}{7}\right) & \text { Simplify fractions } \\
& =\left(\frac{7}{4}\right)^{k+1} \cdot\left(\frac{7}{4}\right)^{-1}\left(\frac{11}{7}\right) & \text { Split up } k \text { exponent } \\
& =\left(\frac{7}{4}\right)^{k+1} \cdot \frac{44}{49} & \\
& <\left(\frac{7}{4}\right)^{k+1} &
\end{array}
$$

Thus $P(k+1)$ holds.
5. Therefore, by the principles of strong induction, the claim $P(n)$ holds for all integers $n \geq 1$.

4. Miscellaneous [10 points]

For parts a-c, write if the statement is true or false. If it is false, provide a counterexample. You do not need to provide any proofs/reasoning if the statement is true.
(a) (2 points) $4 \mid a^{4}$ for all integers a.

Solution:

False.
Counterexample is $a=1.4 \nmid 1^{4}$
(b) (2 points) If $a \mid b$ and $b \mid c$, then $a \mid c$.

Solution:

True.
Given that $a \mid b$ and $b \mid c$, we know that $b=a x$ and $c=b y$ for some integers x, y. Substituting the first equation into the second, we get $c=(a x) y=a(x y)$ which means $a \mid c$.
(c) (2 points) If $a \equiv b(\bmod 5)$ and $a \equiv 1(\bmod 5)$ then $5 \mid b$.

Solution:

False.
Counterexample: $a=1$ and $b=6.1 \equiv 6(\bmod 5)$ and $1 \equiv 1(\bmod 5)$ but $5 \nmid 6$.
(d) (4 points) Which of the following are equivalent to $\neg p \vee(q \rightarrow r)$? Select all that apply.

Solution:

The second and third options are correct.

