
CSE 390Z: Mathematics for Computation Workshop
Practice 311 Final Solutions

Name:

UW ID:

Instructions:

• This is a simulated practice final. You will not be graded on your performance on this exam.

• Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your
neighbors, reference outside material, or use your devices during the next 50 minute period. (Note: On
the real final, you would have 110 minutes)

• If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will
likely be opportunity for partial credit.

• There are 7 problems on this exam, totaling 110 points.
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1. Predicate Translation [15 points]

Let the domain of discourse be trees and places. Define the following predicates:

• Tree(x) := x is a tree
• InBloom(x) := x is in bloom
• CampusSpot(x) := x is a spot on campus
• Crowded(x) := x is crowded
• Located(x, y) := x is located in y

For parts a-d, translate the sentence to predicate logic:

(a) [3 points] Not all spots on campus are crowded.

Solution:
¬∀x(CampusSpot(x) → Crowded(x))
OR
∃x(CampusSpot(x) ∧ ¬Crowded(x))

(b) [3 points] There is a tree located in every spot on campus.

Solution:
∀x∃y(CampusSpot(x) → (Tree(y) ∧ Located(y, x))

(c) [3 points] There is more than one tree located in every spot on campus.

Solution:
∀x∃y∃z(CampusSpot(x) → (Tree(y) ∧ Located(y, x) ∧ Tree(z) ∧ Located(z, x) ∧ y 6= z))

(d) [3 points] For any spot on campus, if a tree is in bloom there, it will be crowded.

Solution:
∀x∀y((CampusSpot(x) ∧ Tree(y) ∧ Located(y, x) ∧ InBloom(y)) → Crowded(x))

(e) [3 points] Translate the negation of this statement to a natural English sentence:

∀x∀y(Tree(x) ∧ CampusSpot(y) ∧ Located(x, y) → ¬InBloom(x))

Solution:
Not all trees on campus are not in bloom.
OR
There is a tree on campus that is in bloom.
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2. Sets [15 points]

For any two sets A and B, prove P(A) ∪ P(B) ⊆ P(A ∪B).

Solution:
Let X be an arbitrary set in P(A) ∪ P(B). By definition of union, X ∈ P(A) or X ∈ P(B). By definition of
power set, X ⊆ A or X ⊆ B.
Case 1: X ⊆ A
Let x be an arbitrary element in X. We have X ⊆ A. Thus, by definition of subset x ∈ A. So certainly, x ∈ A
or x ∈ B, and by definition of union, x ∈ A ∪ B. Since x was arbitrary, by definition of subset, X ⊆ A ∪ B.
By definition of power set, X ∈ P(A ∪B).
Case 2: X ⊆ B
Similarly, let x be an arbitrary element in X. We have X ⊆ B. Thus, by definition of subset x ∈ B. So
certainly, x ∈ A or x ∈ B, and by definition of union, x ∈ A∪B. Since x was arbitrary, by definition of subset,
X ⊆ A ∪B. By definition of power set, X ∈ P(A ∪B).
Thus in any case X ∈ P(A ∪B).
Since X was an arbitrary set, we have proved P(A) ∪ P(B) ⊆ P(A ∪B).
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3. Induction I [15 points]
Use induction to prove the following statement:

For all positive integers n, n3 + 2n is divisible by 3

Solution:
1. Let P(n) be the statement "3|(n3 + 2n)". We will prove P(n) for all integers n ≥ 1 by induction.

2. Base Case: n = 1
n3 + 2n = (1)3 + 2(1) = 3. Since 3|3, this proves P (1).

3. Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer k ≥ 1. Then 3|(k3 + 2k).

4. Inductive Step:
Goal: Show P (k + 1), i.e. show 3|((k + 1)3 + 2(k + 1))

(k + 1)3 + 2(k + 1) = (k2 + 2k + 1)(k + 1) + 2k + 2

= k3 + k2 + 2k2 + 2k + k + 1 + 2k + 2

= k3 + 3k2 + 5k + 3

= (k3 + 2k) + (3k2 + 3k + 3)

By the inductive hypothesis, there exists an integer j such that k3 + 2k = 3j. Substituting this into the last
step above, we get

(k + 1)3 + 2(k + 1) = 3j + (3k2 + 3k + 3) = 3(j + k2 + k + 1)

Since j and k are integers, (j + k2 + k + 1) is an integer. By definition of divides, 3|((k + 1)3 + 2(k + 1)).
Thus, P (k + 1) holds.

5. Thus we have proven P(n) for all integers n ≥ 1 by induction. This is equivalent to the original state-
ment.
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4. Induction II [20 points]

Recursive Definition of BinaryTrees:

• Basis Steps: 0 is a BinaryTree and 1 is a BinaryTree

• Recursive Step: If L,R are BinaryTrees, then (L, 0, R) and (L, 1, R) are also BinaryTrees

Intuitively, a BinaryTree is a binary tree where each node stores either a 0 or a 1.

Recursive functions on BinaryTrees:
The sum function returns the sum of all nodes in a BinaryTrees.

sum(0) = 0

sum(1) = 1

sum((L, 0, R)) = sum(L) + sum(R)

sum((L, 1, R)) = sum(L) + sum(R) + 1

Let n(T ) represent the number of nodes in a BinaryTree T . So,

n(0) = n(1) = 1

n((L, 1, R)) = n((L, 0, R)) = n(L) + n(R) + 1

Prove using structural induction that for all BinaryTrees T , sum(T ) ≤ n(T ).

Solution:
Let P (T ) be sum(T ) ≤ n(T ). We will prove that P (T ) holds for all BinaryTrees by structural induction.

Base cases: There are two basis steps: 0 and 1.
sum(0) = 0 ≤ 1 = n(0). So, P (0) holds.
sum(1) = 1 ≤ n(1). So, P (1) holds.

Inductive Hypothesis: Suppose P (L) and P (R) hold for arbitrary BinaryTrees L,R.

Inductive Step: We want to show P ((L, 0, R)) and P ((L, 1, R)).

sum((L, 0, R)) = sum(L) + sum(R) def. of sum
≤ n(L) + n(R) IH
≤ n(L) + n(R) + 1

= n((L, 0, R)) def. of n

So, P ((L, 0, R)) holds.

sum((L, 1, R)) = sum(L) + sum(R) + 1 def. of sum
≤ n(L) + n(R) + 1 IH
= n((L, 1, R)) def. of n

So, P ((L, 1, R)) holds.

We conclude that P (T ) holds for all BinaryTrees T by structural induction.
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5. Other things [14 points]

(a) (2 points) Consider the cosine function cos: R → R.
Decide whether this function is one-to-one (injective) and whether it is onto (surjective).
# One-to-one/injective only
# Onto/surjective only
# Both
# Neither

Solution:
Neither

(b) (2 points) What if it had been defined as cos: R → [−1, 1]?
# One-to-one/injective only
# Onto/surjective only
# Both
# Neither

Solution:
Surjective

(c) (6 points) Prove the following statement using a proof by contrapositive:

For all integers n, if 5 - n2, then 5 - n.

Solution:
We will prove this statement by contrapositive. Let n be an arbitrary integer, and suppose that 5|n. By
definition of divides, n = 5k for some integer k. So, n2 = (5k)2 = 25k2 = 5(5k2). By definition of
divides, 5|n2. Since n was arbitrary, this shows that if 5|n, then 5|n2 for all integers n. The contrapositive
must also be true, so we have shown that for all integers n, if 5 - n2, then 5 - n.

(d) [2 points] Suppose you are trying to prove the same statement in (c), but with a proof by contradiction.
Write the first sentence of the proof.

Solution:
Suppose for the sake of contradiction that there exists an integer n such that 5 - n2 and 5 | n.

(e) [1 point] True or False: If a language can be represented with a regular expression, it can be recognized
by an NFA.
# True
# False

Solution:
True

(f) [1 point] True or False: There are some regular languages that cannot be represented with a CFG.
# True
# False

Solution:
False
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6. Models of Computation [15 points]

Let L be the language of strings over {0, 1} where there is at least one occurrence of 1 AND at most two
occurrences of 0.

Examples of strings that are in L: 1, 111, 11100, 101, 10110111
Examples of strings that are not in L: ε, 0, 00, 10001

(a) [4 points] Write a regular expression that represents L and a one sentence explanation of why your regular
expression works.
Note: Don’t worry about finding a short and simple answer – our regular expression is quite long.

Solution:

(1∗(0 ∪ ε)11∗(0 ∪ ε)1∗) ∪ (11∗(0 ∪ ε)1∗(0 ∪ ε)1∗) ∪ (1∗(0 ∪ ε)1∗(0 ∪ ε)11∗)

The idea is that we force a 1 to appear either before, in between, or after the 0s. Each 0 position can
also instead be an empty string to allow for scenarios where there are less than two 0s.

(b) [4 points] Write a CFG that matches L. Please indicate clearly what the start symbol of your CFG is.

Solution:

S → 1Y XY XY | Y X1Y XY | Y XY X1Y

X → 0 | ε
Y → 1Y | ε

(c) [7 points] Write a DFA that accepts L.

Solution:
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Solution 1 (cross product construction):
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7. Irregularity Proof [15 points]
Let Σ = {a, b, c}. Let L be the following language:

L = {w : w = akbkck−1 : k ≥ 1}

So, L contains strings of some integer k ≥ 1 occurrences of a, followed by k b’s, followed by k − 1 c’s.

Examples of strings that are in L: ab, aabbc, aaabbbcc
Examples of strings that are not in L: abc, c, aaabcc

Prove that L is not regular.

Solution:
Suppose for the sake of contradiction that some DFA D accepts L.

Consider S = {anbn : n ≥ 1}. Since S contains infinitely many strings and D has a finite number of states,
two strings of S must end up in the same state of D. Say those strings are aibi and ajbj for some i, j ≥ 1 such
that i 6= j. Append ci−1 to both strings. The resulting strings are

x = aibici−1. Note that x ∈ L.
y = ajbjci−1. Note that y /∈ L since i 6= j, so j − 1 6= i− 1.

Both x and y must end at the same state, but since x ∈ L and y /∈ L, the state must be both an accept and a
reject state. This is a contradiction. So, there does not exist a DFA that recognizes L, which means L is not
regular.
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8. Grading Morale [1 point]

Draw a portrait of yourself on spring break!
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