CSE 390Z: Mathematics for Computation Workshop

Practice 311 Final Solutions

Name: _____

UW ID: _____

Instructions:

- This is a **simulated practice final**. You will **not** be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period. (Note: On the real final, you would have 110 minutes)
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 7 problems on this exam, totaling 110 points.

1. Predicate Translation [15 points]

Let the domain of discourse be trees and places. Define the following predicates:

- Tree(x) := x is a tree
- InBloom(x) := x is in bloom
- CampusSpot(x) := x is a spot on campus
- Crowded(x) := x is crowded
- Located(x, y) := x is located in y

For parts a-d, translate the sentence to predicate logic:

(a) [3 points] Not all spots on campus are crowded.

Solution:

```
\neg \forall x (\mathsf{CampusSpot}(x) \to \mathsf{Crowded}(x))
OR
\exists x (\mathsf{CampusSpot}(x) \land \neg \mathsf{Crowded}(x))
```

(b) [3 points] There is a tree located in every spot on campus.

Solution:

 $\forall x \exists y (\mathsf{CampusSpot}(x) \to (\mathsf{Tree}(y) \land \mathsf{Located}(y, x)))$

(c) [3 points] There is more than one tree located in every spot on campus.

Solution:

 $\forall x \exists y \exists z (\mathsf{CampusSpot}(x) \to (\mathsf{Tree}(y) \land \mathsf{Located}(y, x) \land \mathsf{Tree}(z) \land \mathsf{Located}(z, x) \land y \neq z))$

(d) [3 points] For any spot on campus, if a tree is in bloom there, it will be crowded.

Solution:

 $\forall x \forall y ((\mathsf{CampusSpot}(x) \land \mathsf{Tree}(y) \land \mathsf{Located}(y, x) \land \mathsf{InBloom}(y)) \rightarrow \mathsf{Crowded}(x))$

(e) [3 points] Translate the *negation* of this statement to a natural English sentence:

 $\forall x \forall y (\mathsf{Tree}(x) \land \mathsf{CampusSpot}(y) \land \mathsf{Located}(x, y) \rightarrow \neg \mathsf{InBloom}(x))$

Solution:

Not all trees on campus are not in bloom.

OR

There is a tree on campus that is in bloom.

2. Sets [15 points]

For any two sets A and B, prove $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Solution:

Let X be an arbitrary set in $\mathcal{P}(A) \cup \mathcal{P}(B)$. By definition of union, $X \in \mathcal{P}(A)$ or $X \in \mathcal{P}(B)$. By definition of power set, $X \subseteq A$ or $X \subseteq B$.

Case 1: $X \subseteq A$

Let x be an arbitrary element in X. We have $X \subseteq A$. Thus, by definition of subset $x \in A$. So certainly, $x \in A$ or $x \in B$, and by definition of union, $x \in A \cup B$. Since x was arbitrary, by definition of subset, $X \subseteq A \cup B$. By definition of power set, $X \in \mathcal{P}(A \cup B)$.

Case 2: $X \subseteq B$

Similarly, let x be an arbitrary element in X. We have $X \subseteq B$. Thus, by definition of subset $x \in B$. So certainly, $x \in A$ or $x \in B$, and by definition of union, $x \in A \cup B$. Since x was arbitrary, by definition of subset, $X \subseteq A \cup B$. By definition of power set, $X \in \mathcal{P}(A \cup B)$.

Thus in any case $X \in \mathcal{P}(A \cup B)$.

Since X was an arbitrary set, we have proved $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

3. Induction I [15 points]

Use induction to prove the following statement:

For all positive integers n, $n^3 + 2n$ is divisible by 3

Solution:

1. Let P(n) be the statement " $3|(n^3 + 2n)$ ". We will prove P(n) for all integers $n \ge 1$ by induction.

2. Base Case: n = 1 $n^3 + 2n = (1)^3 + 2(1) = 3$. Since 3|3, this proves P(1).

3. Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer $k \ge 1$. Then $3|(k^3 + 2k)$.

4. Inductive Step:

Goal: Show
$$P(k+1)$$
, i.e. show $3|((k+1)^3 + 2(k+1))$

$$(k+1)^{3} + 2(k+1) = (k^{2} + 2k + 1)(k+1) + 2k + 2$$

= $k^{3} + k^{2} + 2k^{2} + 2k + k + 1 + 2k + 2$
= $k^{3} + 3k^{2} + 5k + 3$
= $(k^{3} + 2k) + (3k^{2} + 3k + 3)$

By the inductive hypothesis, there exists an integer j such that $k^3 + 2k = 3j$. Substituting this into the last step above, we get

$$(k+1)^3 + 2(k+1) = 3j + (3k^2 + 3k + 3) = 3(j+k^2 + k + 1)$$

Since j and k are integers, $(j + k^2 + k + 1)$ is an integer. By definition of divides, $3|((k + 1)^3 + 2(k + 1))$. Thus, P(k + 1) holds.

5. Thus we have proven P(n) for all integers $n \ge 1$ by induction. This is equivalent to the original statement.

4. Induction II [20 points]

Recursive Definition of BinaryTrees:

- Basis Steps: 0 is a BinaryTree and 1 is a BinaryTree
- Recursive Step: If L, R are BinaryTrees, then (L, 0, R) and (L, 1, R) are also BinaryTrees

Intuitively, a BinaryTree is a binary tree where each node stores either a 0 or a 1.

Recursive functions on BinaryTrees:

The sum function returns the sum of all nodes in a BinaryTrees.

 $\begin{array}{ll} {\rm sum}(0) & = 0 \\ {\rm sum}(1) & = 1 \\ {\rm sum}((L,0,R)) & = {\rm sum}(L) + {\rm sum}(R) \\ {\rm sum}((L,1,R)) & = {\rm sum}(L) + {\rm sum}(R) + 1 \end{array}$

Let n(T) represent the number of nodes in a BinaryTree T. So,

$$\begin{split} \mathsf{n}(0) &= \mathsf{n}(1) &= 1 \\ \mathsf{n}((L,1,R)) &= \mathsf{n}((L,0,R)) &= \mathsf{n}(L) + \mathsf{n}(R) + 1 \end{split}$$

Prove using structural induction that for all BinaryTrees T, sum $(T) \leq n(T)$.

Solution:

Let P(T) be sum $(T) \leq n(T)$. We will prove that P(T) holds for all BinaryTrees by structural induction.

Base cases: There are two basis steps: 0 and 1. sum(0) = $0 \le 1 = n(0)$. So, P(0) holds. sum(1) = $1 \le n(1)$. So, P(1) holds.

Inductive Hypothesis: Suppose P(L) and P(R) hold for arbitrary BinaryTrees L, R.

Inductive Step: We want to show P((L, 0, R)) and P((L, 1, R)).

sum((L,0,R)) = sum(L) + sum(R)	def. of sum
$\leq n(L) + n(R)$	IH
$\leq n(L) + n(R) + 1$	
= n((L,0,R))	def. of n

So, P((L, 0, R)) holds.

$$\begin{split} \mathsf{sum}((L,1,R)) &= \mathsf{sum}(L) + \mathsf{sum}(R) + 1 & & \mathsf{def. of sum} \\ &\leq \mathsf{n}(L) + \mathsf{n}(R) + 1 & & \mathsf{IH} \\ &= \mathsf{n}((L,1,R)) & & \mathsf{def. of n} \end{split}$$

So, P((L, 1, R)) holds.

We conclude that P(T) holds for all BinaryTrees T by structural induction.

5. Other things [14 points]

(a) (2 points) Consider the cosine function cos: $\mathbb{R} \to \mathbb{R}$.

Decide whether this function is one-to-one (injective) and whether it is onto (surjective).

- One-to-one/injective only
- Onto/surjective only
- O Both
- Neither

Solution:

Neither

(b) (2 points) What if it had been defined as cos: $\mathbb{R} \to [-1,1]$?

- One-to-one/injective only
- \bigcirc Onto/surjective only
- O Both
- Neither

Solution:

Surjective

(c) (6 points) Prove the following statement using a proof by contrapositive:

For all integers n, if $5 \nmid n^2$, then $5 \nmid n$.

Solution:

We will prove this statement by contrapositive. Let n be an arbitrary integer, and suppose that 5|n. By definition of divides, n = 5k for some integer k. So, $n^2 = (5k)^2 = 25k^2 = 5(5k^2)$. By definition of divides, $5|n^2$. Since n was arbitrary, this shows that if 5|n, then $5|n^2$ for all integers n. The contrapositive must also be true, so we have shown that for all integers n, if $5 \nmid n^2$, then $5 \nmid n$.

(d) [2 points] Suppose you are trying to prove the same statement in (c), but with a proof by contradiction. Write the *first sentence* of the proof.

Solution:

Suppose for the sake of contradiction that there exists an integer n such that $5 \nmid n^2$ and $5 \mid n$.

- (e) [1 point] True or False: If a language can be represented with a regular expression, it can be recognized by an NFA.
 - ◯ True
 - ◯ False

Solution:

True

- (f) [1 point] True or False: There are some regular languages that cannot be represented with a CFG.
 - ⊖ True
 - ◯ False

Solution:

False

6. Models of Computation [15 points]

Let L be the language of strings over $\{0, 1\}$ where there is at least one occurrence of 1 AND at most two occurrences of 0.

Examples of strings that are in L: 1, 111, 11100, 101, 10110111 Examples of strings that are not in L: ϵ , 0, 00, 10001

(a) [4 points] Write a regular expression that represents L and a one sentence explanation of why your regular expression works.
 Note: Don't work about finding a short and simple answer – our regular expression is guite long.

Note: Don't worry about finding a short and simple answer - our regular expression is quite long.

Solution:

$(1^*(0 \cup \varepsilon)11^*(0 \cup \epsilon)1^*) \cup (11^*(0 \cup \epsilon)1^*(0 \cup \epsilon)1^*) \cup (1^*(0 \cup \epsilon)1^*(0 \cup \epsilon)11^*)$

The idea is that we force a 1 to appear either before, in between, or after the 0s. Each 0 position can also instead be an empty string to allow for scenarios where there are less than two 0s.

(b) [4 points] Write a CFG that matches L. Please indicate clearly what the start symbol of your CFG is.

Solution:

$$\begin{split} S &\to 1YXYXY \mid YX1YXY \mid YXYX1Y\\ X &\to 0 \mid \epsilon\\ Y &\to 1Y \mid \epsilon \end{split}$$

(c) [7 points] Write a DFA that accepts L.

Solution:

Solution 1 (cross product construction):

Solution 2 (matches the regular expression idea):

7. Irregularity Proof [15 points]

Let $\Sigma = \{a, b, c\}$. Let L be the following language:

$$L = \{ w : w = a^k b^k c^{k-1} : k \ge 1 \}$$

So, L contains strings of some integer $k \ge 1$ occurrences of a, followed by k b's, followed by k - 1 c's.

Examples of strings that are in L: ab, aabbc, aaabbbcc Examples of strings that are not in L: abc, c, aaabcc

Prove that L is not regular.

Solution:

Suppose for the sake of contradiction that some DFA D accepts L.

Consider $S = \{a^n b^n : n \ge 1\}$. Since S contains infinitely many strings and D has a finite number of states, two strings of S must end up in the same state of D. Say those strings are $a^i b^i$ and $a^j b^j$ for some $i, j \ge 1$ such that $i \ne j$. Append c^{i-1} to both strings. The resulting strings are

 $x = a^i b^i c^{i-1}$. Note that $x \in L$. $y = a^j b^j c^{i-1}$. Note that $y \notin L$ since $i \neq j$, so $j - 1 \neq i - 1$.

Both x and y must end at the same state, but since $x \in L$ and $y \notin L$, the state must be both an accept and a reject state. This is a contradiction. So, there does not exist a DFA that recognizes L, which means L is not regular.

8. Grading Morale [1 point]

Draw a portrait of yourself on spring break!