CSE 390Z: Mathematics for Computation Workshop

Practice 311 Final

Name: \qquad

UW ID: \qquad

Instructions:

- This is a simulated practice final. You will not be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period. (Note: On the real final, you would have 110 minutes)
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 7 problems on this exam, totaling 110 points.

1. Predicate Translation [15 points]

Let the domain of discourse be trees and places. Define the following predicates:

- Tree $(x):=x$ is a tree
- InBloom $(x):=x$ is in bloom
- CampusSpot $(x):=x$ is a spot on campus
- Crowded $(x):=x$ is crowded
- Located $(x, y):=x$ is located in y

For parts a-d, translate the sentence to predicate logic:
(a) [3 points] Not all spots on campus are crowded.
(b) [3 points] There is a tree located in every spot on campus.
(c) [3 points] There is more than one tree located in every spot on campus.
(d) [3 points] For any spot on campus, if a tree is in bloom there, it will be crowded.
(e) [3 points] Translate the negation of this statement to a natural English sentence:

$$
\forall x \forall y(\operatorname{Tree}(x) \wedge \text { CampusSpot }(y) \wedge \operatorname{Located}(x, y) \rightarrow \neg \operatorname{InBloom}(x))
$$

2. Sets [15 points]

For any two sets A and B, prove $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
3. Induction I [15 points]

Use induction to prove the following statement:
For all positive integers $n, n^{3}+2 n$ is divisible by 3
4. Induction II [20 points]

Recursive Definition of BinaryTrees:

- Basis Steps: 0 is a BinaryTree and 1 is a BinaryTree
- Recursive Step: If L, R are BinaryTrees, then $(L, 0, R)$ and $(L, 1, R)$ are also BinaryTrees Intuitively, a BinaryTree is a binary tree where each node stores either a 0 or a 1.

Recursive functions on BinaryTrees:

The sum function returns the sum of all nodes in a BinaryTrees.

$$
\begin{array}{ll}
\operatorname{sum}(0) & =0 \\
\operatorname{sum}(1) & =1 \\
\operatorname{sum}((L, 0, R)) & =\operatorname{sum}(L)+\operatorname{sum}(R) \\
\operatorname{sum}((L, 1, R)) & =\operatorname{sum}(L)+\operatorname{sum}(R)+1
\end{array}
$$

Let $\mathrm{n}(T)$ represent the number of nodes in a BinaryTree T. So,

$$
\begin{array}{ll}
\mathrm{n}(0)=\mathrm{n}(1) & =1 \\
\mathrm{n}((L, 1, R))=\mathrm{n}((L, 0, R)) & =\mathrm{n}(L)+\mathrm{n}(R)+1
\end{array}
$$

Prove using structural induction that for all BinaryTrees T, $\operatorname{sum}(T) \leq \mathrm{n}(T)$.

5. Other things [14 points]

(a) (2 points) Consider the cosine function cos: $\mathbb{R} \rightarrow \mathbb{R}$.

Decide whether this function is one-to-one (injective) and whether it is onto (surjective).
One-to-one/injective onlyOnto/surjective only
BothNeither
(b) (2 points) What if it had been defined as cos: $\mathbb{R} \rightarrow[-1,1]$?

One-to-one/injective onlyOnto/surjective only
BothNeither
(c) (6 points) Prove the following statement using a proof by contrapositive:

For all integers n, if $5 \nmid n^{2}$, then $5 \nmid n$.
(d) [2 points] Suppose you are trying to prove the same statement in (c), but with a proof by contradiction. Write the first sentence of the proof.
(e) [1 point] True or False: If a language can be represented with a regular expression, it can be recognized by an NFA.TrueFalse
(f) [1 point] True or False: There are some regular languages that cannot be represented with a CFG.
\qquad TrueFalse

6. Models of Computation [15 points]

Let L be the language of strings over $\{0,1\}$ where there is at least one occurrence of 1 AND at most two occurrences of 0 .

Examples of strings that are in $L: 1,111,11100,101,10110111$
Examples of strings that are not in $L: \epsilon, 0,00,10001$
(a) [4 points] Write a regular expression that represents L and a one sentence explanation of why your regular expression works.
Note: Don't worry about finding a short and simple answer - our regular expression is quite long.
(b) [4 points] Write a CFG that matches L. Please indicate clearly what the start symbol of your CFG is.
(c) [7 points] Write a DFA that accepts L.

7. Irregularity Proof [15 points]

Let $\Sigma=\{a, b, c\}$. Let L be the following language:

$$
L=\left\{w: w=a^{k} b^{k} c^{k-1}: k \geq 1\right\}
$$

So, L contains strings of some integer $k \geq 1$ occurrences of a, followed by k b's, followed by $k-1$ c's.
Examples of strings that are in L : ab, aabbc, aaabbbcc
Examples of strings that are not in L : abc, c, aaabcc
Prove that L is not regular.
8. Grading Morale [1 point]

Draw a portrait of yourself on spring break!

