CSE 390Z: Mathematics of Computing

Week 9 Workshop Solutions

Conceptual Review

Relations definitions: Let R be a relation on A. In other words, $R \subseteq A \times A$. Then:

- R is reflexive iff for all $a \in A$, $(a, a) \in R$.
- R is symmetric iff for all a, b, if $(a, b) \in R$, then $(b, a) \in R$.
- R is antisymmetric iff for all a, b, if $(a, b) \in R$ and $a \neq b$, then $(b, a) \notin R$.
- R is transitive iff for all a, b, if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$.

Let R, S be relations on A. Then:

• $R \circ S = \{(a,c) : \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S\}$

1. Relations Examples

(a) Suppose that R, S are relations on the integers, where $R = \{(1, 2), (4, 3), (5, 5)\}$ and $S = \{(2, 5), (2, 7), (3, 3)\}$. What is $R \circ S$? What is $S \circ R$?

Solution:

 $R \circ S = \{(1,5), (1,7), (4,3)\}$ $S \circ R = \{(2,5)\}$

(b) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b + 1$. List 3 pairs of integers that are in R, and 3 pairs of integers that are not.

Solution:

In R: (0,0), (1,0), (-1,0)Not in R: (2,0), (3,0), (17,5)

(c) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b+1$. Determine if R is reflexive, symmetric, antisymmetric, and/or transitive. If a relation has a property, explain why. If not, state a counterexample.

Solution:

- Reflexive: Yes. For any integer a, it is true that $a \le a + 1$. So $(a, a) \in R$.
- Symmetric: No. For example, $(0, 20) \in R$ but $(20, 0) \notin R$.
- Antisymmetric: No. For example $(0,1) \in R$ and $(1,0) \in R$.
- Transitive: No. For example $(2,1) \in R$ and $(1,0) \in R$, but $(2,0) \notin R$.

2. Relations Proofs

Suppose that $R, S \subseteq \mathbb{Z} \times \mathbb{Z}$ are relations.

(a) Prove or disprove: If R and S are transitive, $R \cup S$ is transitive.

Solution:

False. Let $R = \{(1,2)\}$, $S = \{(2,1)\}$. By definition, R and S are transitive. By definition of intersect, $R \cup S = \{(1,2), (2,1)\}$. However, if $R \cup S$ was transitive, we would require (1,1) to be in $R \cup S$, because (1,2) and (2,1) is in $R \cup S$. However, this is not the case. Therefore the claim is false.

(b) Prove or disprove: If R and S are reflexive, then $R \circ S$ is reflexive.

Solution:

True. Let $a \in \mathbb{Z}$ be arbitrary. Then $(a, a) \in R$ and $(a, a) \in S$ by definition of reflexive. Then $(a, a) \in R \circ S$. So $R \circ S$ is reflexive.

(c) Prove or disprove: If $R \circ S$ is reflexive, then R and S are reflexive.

Solution:

False. Let $R = \{(a, a + 1) : a \in \mathbb{Z}\}$. In other words, $R = \{...(-2, -1), (-1, 0), (0, 1), (1, 2)...\}$. Let $S = \{(a, a - 1) : a \in \mathbb{Z}\}$. In other words, $S = \{...(-1, -2), (0, -1), (1, 0), (2, 1)...\}$. Then for any arbitrary $a \in \mathbb{Z}$, we have $(a, a + 1) \in R$ and $(a + 1, a) \in S$. So $(a, a) \in R \circ S$. So $R \circ S$ is reflexive. Thus we have found an example where $R \circ S$ is reflexive, but R and S are not.

(d) Prove or disprove: If R is symmetric, \overline{R} (the complement of R) is symmetric.

Solution:

True. Since R is symmetric, we know the following.

 $\forall a \forall b \ [(a,b) \in R \to (b,a) \in R]$

Taking the contrapositive, this is equivalent to:

 $\forall a \forall b \ [(b,a) \notin R \to (a,b) \notin R]$

By the definition of complement, this is equivalent to:

 $\forall a \forall b \ [(b,a) \in \overline{R} \to (a,b) \in \overline{R}]$

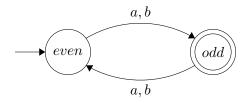
This is the definition of \overline{R} being symmetric.

3. Constructing DFAs

For each of the following, construct a DFA for the specified language.

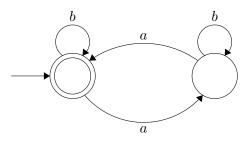
(a) Strings of a's and b's with odd length ($\Sigma = \{a, b\}$).

Solution:



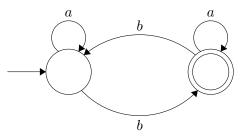
(b) Strings with an even number of a's ($\Sigma = \{a, b\}$).

Solution:



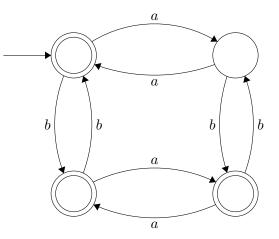
(c) Strings with an odd number of b's ($\Sigma = \{a, b\}$).

Solution:



(d) Strings with an even number of a's or an odd number of b's ($\Sigma = \{a, b\}$).

Solution:



4. Structural Induction: Dictionaries

Recursive definition of a Dictionary (i.e. a Map):

- Basis Case: [] is the empty dictionary
- Recursive Case: If D is a dictionary, and a and b are elements of the universe, then (a → b) :: D is a dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

Recursive functions on Sets:

$$len([]) = 0$$
$$len(a :: C) = 1 + len(C)$$

Statement to prove:

Prove that len(D) = len(AllKeys(D)).

Solution:

Define P(D) to be len(D) = len(AllKeys(D)) for a Dictionary D. We will use structural induction to show P(D) for all dictionaries D.

Base Case: D = []: len(D) = len([]) = 0 by definition of dictionary len. Since AllKeys([]) = [] by definition of AllKeys, len(AllKeys(D)) = len([]) = 0 by definition of set len. Since 0 = 0, P([]) is true.

Inductive Hypothesis: Suppose P(B) holds for an arbitrary dictionary B. That is, len(B) = len(AllKeys(B)). **Inductive Step:** Let a, b be arbitrary.

Goal: Show $P((a \rightarrow b) :: B)$ i.e. $len((a \rightarrow b) :: B) = len(AllKeys((a \rightarrow b) :: B))$

 $len((a \rightarrow b) :: B) = 1 + len(B)$ = 1 + len(AllKeys(B)) = len(a :: AllKeys(B)) $= len(AllKeys((a \rightarrow b) :: B))$ [Definition of AllKeys]

So $P((a \rightarrow b) :: B)$ holds.

Conclusion: Thus, the claim holds for all dictionaries D by structural induction.

5. Structural Induction on Palindromes

Consider the following *recursive* defintion of the set B of palindrome binary strings:

- Base case: $\varepsilon \in B$, $0 \in B$, $1 \in B$.
- Recursive steps:

- If $s \in B$, then $0s0 \in E$, $1s1 \in B$, and $ss \in B$.

Now define the functions numOnes(x) and numZeros(x) to be the number of 1s and 0s respectively in the string x.

Use structural induction to prove that for any string $s \in B$, numOnes $(s) \cdot$ numZeros(s) is even.

Solution:

Define P(n) to be "2 | numOnes $(s) \cdot$ numZeros(s)". We will show P(n) for all $n \in B$ by structural induction. Base Cases:

- $s = \varepsilon$: numOnes(ε) · numZeros(ε) = 0 · 0 = 0 = 2 · 0, thus P(ε) holds.
- s = 0: numOnes(0) · numZeros(0) = 0 · 1 = 0 = 2 · 0, thus P(0) holds.
- s = 1: numOnes(1) · numZeros(1) = 1 · 0 = 0 = 2 · 0, thus P(1) holds.

Inductive Hypothesis: Suppose P(s) holds for an arbitrary string $s \in B$. **Inductive Step:**

• Case 1: 0s0

 $numOnes(0s0) \cdot numZeros(0s0) = (2 + numZeros(s)) \cdot numOnes(s)$ (Def. of numZeros, numOnes) = 2 \cdot numOnes(s) + numZeros(s) \cdot numOnes(s)

By the I.H., $2 \mid \text{numZeros}(s) \cdot \text{numOnes}(s)$, thus there is an integer k s.t. $\text{numZeros}(s) \cdot \text{numOnes}(s) = 2 \cdot k$. We can substitute this to get $2 \cdot \text{numOnes}(s) + 2 \cdot k$, which we can rearrange to get $2 \cdot (\text{numOnes}(s) + k)$, thus $2 \mid \text{numOnes}(0s0) \cdot \text{numZeros}(0s0)$ and P(0s0) holds.

• Case 2: 1s1

 $numOnes(1s1) \cdot numZeros(1s1) = numZeros(s) \cdot (2 + numOnes(s))$ (Def. of numZeros, numOnes) = 2 \cdot numZeros(s) + numZeros(s) \cdot numOnes(s)

By the I.H., $2 \mid \mathsf{numZeros}(s) \cdot \mathsf{numOnes}(s)$, thus there is an integer k s.t. $\mathsf{numZeros}(s) \cdot \mathsf{numOnes}(s) = 2 \cdot k$. We can substitute this to get $2 \cdot \mathsf{numZeros}(s) + 2 \cdot k$, which we can rearrange to get $2 \cdot (\mathsf{numZeros}(s) + k)$, thus $2 \mid \mathsf{numOnes}(1s1) \cdot \mathsf{numZeros}(1s1)$ and $\mathsf{P}(1s1)$ holds.

• Case 3: *ss*

 $numOnes(ss) \cdot numZeros(ss) = (2 \cdot numOnes(s)) \cdot (2 \cdot numZeros(s))$ (Def. of numZeros, numOnes) = 4 \cdot numOnes(s) \cdot numZeros(s)

By the I.H., $2 \mid \mathsf{numZeros}(s) \cdot \mathsf{numOnes}(s)$, thus there is an integer k s.t. $\mathsf{numZeros}(s) \cdot \mathsf{numOnes}(s) = 2 \cdot k$. We can substitute this to get $4 \cdot 2 \cdot k = 2 \cdot (4 \cdot k)$, thus $2 \mid \mathsf{numOnes}(ss) \cdot \mathsf{numZeros}(ss)$ and $\mathsf{P}(ss)$ holds.

Thus, P(s) holds for all $s \in B$ by structural induction.