CSE 390Z: Mathematics of Computing
Week 9 Workshop Solutions

Conceptual Review
Relations definitions: Let R be a relation on A. In other words, R C A x A. Then:
» R is reflexive iff for all a € A, (a,a) € R.

» R is symmetric iff for all a,b, if (a,b) € R, then (b,a) € R.

» R is antisymmetric iff for all a, b, if (a,b) € R and a # b, then (b,a) & R.

= R is transitive iff for all a,b, if (a,b) € R and (b,c) € R, then (a,c) € R.
Let R, S be relations on A. Then:

» RoS ={(a,c): 3bsuch that (a,b) € R and (b,c) € S}

1. Relations Examples
(a) Suppose that R, S are relations on the integers, where R = {(1,2), (4,3), (5,5)} and S = {(2,5),(2,7),(3,3)}.
What is Ro S7 What is S o R?

Solution:
RoS = {(175)7 (177)7 (47 3)}
SoR={(25)}

(b) Consider the relation R C Z x Z defined by (a,b) € R iff a < b+ 1. List 3 pairs of integers that are in
R, and 3 pairs of integers that are not.

Solution:

In R: (0,0),(1,0),(—1,0)
Not in R: (2,0),(3,0), (17,5)

(c) Consider the relation R C 7 x Z defined by (a,b) € R iff a < b+1. Determine if R is reflexive, symmetric,
antisymmetric, and/or transitive. If a relation has a property, explain why. If not, state a counterexample.

Solution:
» Reflexive: Yes. For any integer a, it is true that a < a + 1. So (a,a) € R.
= Symmetric: No. For example, (0,20) € R but (20,0) € R.
= Antisymmetric: No. For example (0,1) € R and (1,0) € R.
= Transitive: No. For example (2,1) € R and (1,0) € R, but (2,0) € R.

2. Relations Proofs
Suppose that R, S C Z X Z are relations.

(a) Prove or disprove: If R and S are transitive, R U S is transitive.



Solution:

False. Let R = {(1,2)}, S = {(2,1)}. By definition, R and S are transitive. By definition of intersect,
RUS ={(1,2),(2,1)}. However, if RU.S was transitive, we would require (1,1) to be in RU .S, because
(1,2) and (2,1) is in RU S. However, this is not the case. Therefore the claim is false.

(b) Prove or disprove: If R and S are reflexive, then Ro S is reflexive.

Solution:

True. Let a € Z be arbitrary. Then (a,a) € R and (a,a) € S by definition of reflexive. Then (a,a) € RoS.
So Ro S is reflexive.

(c) Prove or disprove: If Ro S is reflexive, then R and S are reflexive.

Solution:

False. Let R = {(a,a+ 1) : a € Z}. In other words, R = {...(—2,—1),(—1,0),(0,1),(1,2)...}. Let
S ={(a,a—1) : a € Z}. In other words, S = {...(—1,-2),(0,-1),(1,0),(2,1)...}. Then for any
arbitrary a € Z, we have (a,a+1) € R and (a+1,a) € S. So (a,a) € RoS. So Ro S is reflexive.
Thus we have found an example where R o S is reflexive, but R and S are not.

(d) Prove or disprove: If R is symmetric, R (the complement of R) is symmetric.

Solution:

True. Since R is symmetric, we know the following.

Vavb [(a,b) € R — (b,a) € R|
Taking the contrapositive, this is equivalent to:

Vavb [(b,a) € R — (a,b) ¢ R)
By the definition of complement, this is equivalent to:

Vavb [(b,a) € R — (a,b) € R]

This is the definition of R being symmetric.

3. Constructing DFAs
For each of the following, construct a DFA for the specified language.
(a) Strings of a's and b's with odd length (X = {a,b}).

Solution:
a,b

a,b

(b) Strings with an even number of a's (X = {a,b}).



Solution:

(c) Strings with an odd number of b's (¥ = {a, b}).

Solution:

(d) Strings with an even number of a's or an odd number of b's (£ = {a,b}).

Solution:




4. Structural Induction: Dictionaries
Recursive definition of a Dictionary (i.e. a Map):

» Basis Case: [] is the empty dictionary

= Recursive Case: If D is a dictionary, and a and b are elements of the universe, then (a — b) :: D is a
dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

AllKeys([1) =0

AllKeys((a — ) : D) = a :: AllKeys(D)
len([1) =
len((a — b) :: D) =1+len(D)

Recursive functions on Sets:

Statement to prove:
Prove that len(D) = len(AllKeys(D)).

Solution:

Define P(D) to be len(D) = len(AllKeys(D)) for a Dictionary D. We will use structural induction to show P(D)
for all dictionaries D.

Base Case: D = [I:

len(D) = len([1) = 0 by definition of dictionary len.

Since AllKeys([1) = [1 by definition of AllKeys, len(AllKeys(D)) = len([1) = 0 by definition of set len.
Since 0 =0, P([1) is true.

Inductive Hypothesis: Suppose P(B) holds for an arbitrary dictionary B. That is, len(B) = len(AllKeys(B)).
Inductive Step: Let a,b be arbitrary.

| Goal: Show P((a — b) :: B) i.e. len((a — b) :: B) = len(AllKeys((a — b) :: B))]

len((a — b) :: B) = 1+ len(B) [Definition of Len]
=1+ len(AllKeys(B)) [IH]
= len(a :: AllKeys(B)) [Definition of Len]
= len(AllKeys((a — b) :: B)) [Definition of AllKeys]

So P((a — b) :: B) holds.
Conclusion: Thus, the claim holds for all dictionaries D by structural induction.



5. Structural Induction on Palindromes
Consider the following recursive defintion of the set B of palindrome binary strings:
» Basecase: c€ B,0e B, 1€ B.

= Recursive steps:
— If s€ B, then 0s0 € F, 1s1 € B, and ss € B.

Now define the functions numOnes(x) and numZeros(x) to be the number of 1s and Os respectively in
the string x.

Use structural induction to prove that for any string s € B, numOnes(s) - numZeros(s) is even.

Solution:
Define P(n) to be "2 | numOnes(s) - numZeros(s)". We will show P(n) for all n € B by structural induction.
Base Cases:

» s=-¢c: numOnes(g) - numZeros(e) = 0=2-0, thus P(¢g) holds.

» 5 =0: numOnes(0) - numZeros(0) = 0=2-0, thus P(0) holds.
= s=1: numOnes(1) - numZeros(1) = =0=2-0, thus P(1) holds.
)

Inductive Hypothesis: Suppose P(s) holds for an arbitrary string s € B.
Inductive Step:

= Case 1: 0s0

numOnes(0s0) - numZeros(0s0) = (2 + numZeros(s)) - numOnes(s)  (Def. of numZeros, numOnes)

= 2 - numOnes(s) + numZeros(s) - numOnes(s)

By the I.H., 2 | numZeros(s)-numOnes(s), thus there is an integer k s.t. numZeros(s)-numOnes(s) = 2-k.
We can substitute this to get 2 - numOnes(s) + 2 - k, which we can rearrange to get 2 (numOnes(s) + k),
thus 2 | numOnes(0s0) - numZeros(0s0) and P(0s0) holds.

= Case 2: 1sl

numOnes(1s1) - numZeros(1sl) = numZeros(s) - (24 numOnes(s))  (Def. of numZeros, numOnes)

= 2 - numZeros(s) + numZeros(s) - numOnes(s)

By the I.H., 2 | numZeros(s)-numOnes(s), thus there is an integer k s.t. numZeros(s)-numOnes(s) = 2-k.
We can substitute this to get 2-numZeros(s) + 2 -k, which we can rearrange to get 2- (numZeros(s) + k),
thus 2 | numOnes(1s1) - numZeros(1s1) and P(1s1) holds.

= Case 3: ss

numOnes(ss) - numZeros(ss) = (2 - numOnes(s)) - (2 - numZeros(s)) (Def. of numZeros, numOnes)

=4 -numOnes(s) - numZeros(s)

By the I.H., 2 | numZeros(s)-numOnes(s), thus there is an integer k s.t. numZeros(s)-numOnes(s) = 2-k.
We can substitute this to get 4-2-k =2-(4- k), thus 2 | numOnes(ss) - numZeros(ss) and P(ss) holds.

Thus, P(s) holds for all s € B by structural induction.



