
CSE 390Z: Mathematics of Computing
Week 9 Workshop Solutions

Conceptual Review
Relations definitions: Let R be a relation on A. In other words, R ⊆ A×A. Then:

• R is reflexive iff for all a ∈ A, (a, a) ∈ R.

• R is symmetric iff for all a, b, if (a, b) ∈ R, then (b, a) ∈ R.

• R is antisymmetric iff for all a, b, if (a, b) ∈ R and a 6= b, then (b, a) 6∈ R.

• R is transitive iff for all a, b, if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

Let R,S be relations on A. Then:

• R ◦ S = {(a, c) : ∃b such that (a, b) ∈ R and (b, c) ∈ S}

1. Relations Examples
(a) Suppose that R,S are relations on the integers, where R = {(1, 2), (4, 3), (5, 5)} and S = {(2, 5), (2, 7), (3, 3)}.

What is R ◦ S? What is S ◦R?

Solution:
R ◦ S = {(1, 5), (1, 7), (4, 3)}
S ◦R = {(2, 5)}

(b) Consider the relation R ⊆ Z × Z defined by (a, b) ∈ R iff a ≤ b + 1. List 3 pairs of integers that are in
R, and 3 pairs of integers that are not.

Solution:
In R: (0, 0), (1, 0), (−1, 0)
Not in R: (2, 0), (3, 0), (17, 5)

(c) Consider the relation R ⊆ Z×Z defined by (a, b) ∈ R iff a ≤ b+1. Determine if R is reflexive, symmetric,
antisymmetric, and/or transitive. If a relation has a property, explain why. If not, state a counterexample.

Solution:
• Reflexive: Yes. For any integer a, it is true that a ≤ a+ 1. So (a, a) ∈ R.
• Symmetric: No. For example, (0, 20) ∈ R but (20, 0) 6∈ R.
• Antisymmetric: No. For example (0, 1) ∈ R and (1, 0) ∈ R.
• Transitive: No. For example (2, 1) ∈ R and (1, 0) ∈ R, but (2, 0) 6∈ R.

2. Relations Proofs
Suppose that R,S ⊆ Z× Z are relations.

(a) Prove or disprove: If R and S are transitive, R ∪ S is transitive.
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Solution:
False. Let R = {(1, 2)}, S = {(2, 1)}. By definition, R and S are transitive. By definition of intersect,
R∪S = {(1, 2), (2, 1)}. However, if R∪S was transitive, we would require (1, 1) to be in R∪S, because
(1,2) and (2,1) is in R ∪ S. However, this is not the case. Therefore the claim is false.

(b) Prove or disprove: If R and S are reflexive, then R ◦ S is reflexive.

Solution:
True. Let a ∈ Z be arbitrary. Then (a, a) ∈ R and (a, a) ∈ S by definition of reflexive. Then (a, a) ∈ R◦S.
So R ◦ S is reflexive.

(c) Prove or disprove: If R ◦ S is reflexive, then R and S are reflexive.

Solution:
False. Let R = {(a, a + 1) : a ∈ Z}. In other words, R = {...(−2,−1), (−1, 0), (0, 1), (1, 2)...}. Let
S = {(a, a − 1) : a ∈ Z}. In other words, S = {...(−1,−2), (0,−1), (1, 0), (2, 1)...}. Then for any
arbitrary a ∈ Z, we have (a, a + 1) ∈ R and (a + 1, a) ∈ S. So (a, a) ∈ R ◦ S. So R ◦ S is reflexive.
Thus we have found an example where R ◦ S is reflexive, but R and S are not.

(d) Prove or disprove: If R is symmetric, R (the complement of R) is symmetric.

Solution:
True. Since R is symmetric, we know the following.

∀a∀b [(a, b) ∈ R → (b, a) ∈ R]

Taking the contrapositive, this is equivalent to:

∀a∀b [(b, a) 6∈ R → (a, b) 6∈ R]

By the definition of complement, this is equivalent to:

∀a∀b [(b, a) ∈ R → (a, b) ∈ R]

This is the definition of R being symmetric.

3. Constructing DFAs
For each of the following, construct a DFA for the specified language.

(a) Strings of a’s and b’s with odd length (Σ = {a, b}).

Solution:

even odd

a, b

a, b

(b) Strings with an even number of a’s (Σ = {a, b}).
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Solution:

a

a

b b

(c) Strings with an odd number of b’s (Σ = {a, b}).

Solution:

b

b
a a

(d) Strings with an even number of a’s or an odd number of b’s (Σ = {a, b}).

Solution:
a

a

a

a

b b b b
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4. Structural Induction: Dictionaries
Recursive definition of a Dictionary (i.e. a Map):

• Basis Case: [] is the empty dictionary

• Recursive Case: If D is a dictionary, and a and b are elements of the universe, then (a → b) :: D is a
dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

AllKeys([]) = []

AllKeys((a → b) :: D) = a :: AllKeys(D)

len([]) = 0

len((a → b) :: D) = 1 + len(D)

Recursive functions on Sets:

len([]) = 0

len(a :: C) = 1 + len(C)

Statement to prove:
Prove that len(D) = len(AllKeys(D)).

Solution:
Define P(D) to be len(D) = len(AllKeys(D)) for a Dictionary D. We will use structural induction to show P(D)
for all dictionaries D.

Base Case: D = []:
len(D) = len([]) = 0 by definition of dictionary len.
Since AllKeys([]) = [] by definition of AllKeys, len(AllKeys(D)) = len([]) = 0 by definition of set len.
Since 0 = 0, P([]) is true.

Inductive Hypothesis: Suppose P(B) holds for an arbitrary dictionary B. That is, len(B) = len(AllKeys(B)).
Inductive Step: Let a, b be arbitrary.

Goal: Show P((a → b) :: B) i.e. len((a → b) :: B) = len(AllKeys((a → b) :: B))

len((a → b) :: B) = 1 + len(B) [Definition of Len]
= 1 + len(AllKeys(B)) [IH]
= len(a :: AllKeys(B)) [Definition of Len]
= len(AllKeys((a → b) :: B)) [Definition of AllKeys]

So P((a → b) :: B) holds.
Conclusion: Thus, the claim holds for all dictionaries D by structural induction.
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5. Structural Induction on Palindromes
Consider the following recursive defintion of the set B of palindrome binary strings:

• Base case: ε ∈ B, 0 ∈ B, 1 ∈ B.

• Recursive steps:

– If s ∈ B, then 0s0 ∈ E, 1s1 ∈ B, and ss ∈ B.

Now define the functions numOnes(x) and numZeros(x) to be the number of 1s and 0s respectively in
the string x.

Use structural induction to prove that for any string s ∈ B, numOnes(s) · numZeros(s) is even.

Solution:
Define P(n) to be "2 | numOnes(s) · numZeros(s)". We will show P(n) for all n ∈ B by structural induction.
Base Cases:

• s = ε: numOnes(ε) · numZeros(ε) = 0 · 0 = 0 = 2 · 0, thus P(ε) holds.

• s = 0: numOnes(0) · numZeros(0) = 0 · 1 = 0 = 2 · 0, thus P(0) holds.

• s = 1: numOnes(1) · numZeros(1) = 1 · 0 = 0 = 2 · 0, thus P(1) holds.

Inductive Hypothesis: Suppose P(s) holds for an arbitrary string s ∈ B.
Inductive Step:

• Case 1: 0s0

numOnes(0s0) · numZeros(0s0) = (2 + numZeros(s)) · numOnes(s) (Def. of numZeros, numOnes)
= 2 · numOnes(s) + numZeros(s) · numOnes(s)

By the I.H., 2 | numZeros(s)·numOnes(s), thus there is an integer k s.t. numZeros(s)·numOnes(s) = 2·k.
We can substitute this to get 2 · numOnes(s)+2 · k, which we can rearrange to get 2 · (numOnes(s)+ k),
thus 2 | numOnes(0s0) · numZeros(0s0) and P(0s0) holds.

• Case 2: 1s1

numOnes(1s1) · numZeros(1s1) = numZeros(s) · (2 + numOnes(s)) (Def. of numZeros, numOnes)
= 2 · numZeros(s) + numZeros(s) · numOnes(s)

By the I.H., 2 | numZeros(s)·numOnes(s), thus there is an integer k s.t. numZeros(s)·numOnes(s) = 2·k.
We can substitute this to get 2 ·numZeros(s)+2 ·k, which we can rearrange to get 2 · (numZeros(s)+k),
thus 2 | numOnes(1s1) · numZeros(1s1) and P(1s1) holds.

• Case 3: ss

numOnes(ss) · numZeros(ss) = (2 · numOnes(s)) · (2 · numZeros(s)) (Def. of numZeros, numOnes)
= 4 · numOnes(s) · numZeros(s)

By the I.H., 2 | numZeros(s)·numOnes(s), thus there is an integer k s.t. numZeros(s)·numOnes(s) = 2·k.
We can substitute this to get 4 · 2 · k = 2 · (4 · k), thus 2 | numOnes(ss) · numZeros(ss) and P(ss) holds.

Thus, P(s) holds for all s ∈ B by structural induction.
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