CSE 390Z: Mathematics of Computing

Week 9 Workshop Solutions

Conceptual Review

Relations definitions: Let R be a relation on A. In other words, $R \subseteq A \times A$. Then:

- R is reflexive iff for all $a \in A,(a, a) \in R$.
- R is symmetric iff for all a, b, if $(a, b) \in R$, then $(b, a) \in R$.
- R is antisymmetric iff for all a, b, if $(a, b) \in R$ and $a \neq b$, then $(b, a) \notin R$.
- R is transitive iff for all a, b, if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$.

Let R, S be relations on A. Then:

- $R \circ S=\{(a, c): \exists b$ such that $(a, b) \in R$ and $(b, c) \in S\}$

1. Relations Examples

(a) Suppose that R, S are relations on the integers, where $R=\{(1,2),(4,3),(5,5)\}$ and $S=\{(2,5),(2,7),(3,3)\}$. What is $R \circ S$? What is $S \circ R$?

Solution:

$R \circ S=\{(1,5),(1,7),(4,3)\}$
$S \circ R=\{(2,5)\}$
(b) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b+1$. List 3 pairs of integers that are in R, and 3 pairs of integers that are not.

Solution:

In $R:(0,0),(1,0),(-1,0)$
Not in $R:(2,0),(3,0),(17,5)$
(c) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b+1$. Determine if R is reflexive, symmetric, antisymmetric, and/or transitive. If a relation has a property, explain why. If not, state a counterexample.

Solution:

- Reflexive: Yes. For any integer a, it is true that $a \leq a+1$. So $(a, a) \in R$.
- Symmetric: No. For example, $(0,20) \in R$ but $(20,0) \notin R$.
- Antisymmetric: No. For example $(0,1) \in R$ and $(1,0) \in R$.
- Transitive: No. For example $(2,1) \in R$ and $(1,0) \in R$, but $(2,0) \notin R$.

2. Relations Proofs

Suppose that $R, S \subseteq \mathbb{Z} \times \mathbb{Z}$ are relations.
(a) Prove or disprove: If R and S are transitive, $R \cup S$ is transitive.

Solution:

False. Let $R=\{(1,2)\}, S=\{(2,1)\}$. By definition, R and S are transitive. By definition of intersect, $R \cup S=\{(1,2),(2,1)\}$. However, if $R \cup S$ was transitive, we would require $(1,1)$ to be in $R \cup S$, because $(1,2)$ and $(2,1)$ is in $R \cup S$. However, this is not the case. Therefore the claim is false.
(b) Prove or disprove: If R and S are reflexive, then $R \circ S$ is reflexive.

Solution:

True. Let $a \in \mathbb{Z}$ be arbitrary. Then $(a, a) \in R$ and $(a, a) \in S$ by definition of reflexive. Then $(a, a) \in R \circ S$. So $R \circ S$ is reflexive.
(c) Prove or disprove: If $R \circ S$ is reflexive, then R and S are reflexive.

Solution:

False. Let $R=\{(a, a+1): a \in \mathbb{Z}\}$. In other words, $R=\{\ldots(-2,-1),(-1,0),(0,1),(1,2) \ldots\}$. Let $S=\{(a, a-1): a \in \mathbb{Z}\}$. In other words, $S=\{\ldots(-1,-2),(0,-1),(1,0),(2,1) \ldots\}$. Then for any arbitrary $a \in \mathbb{Z}$, we have $(a, a+1) \in R$ and $(a+1, a) \in S$. So $(a, a) \in R \circ S$. So $R \circ S$ is reflexive. Thus we have found an example where $R \circ S$ is reflexive, but R and S are not.
(d) Prove or disprove: If R is symmetric, \bar{R} (the complement of R) is symmetric.

Solution:

True. Since R is symmetric, we know the following.

$$
\forall a \forall b[(a, b) \in R \rightarrow(b, a) \in R]
$$

Taking the contrapositive, this is equivalent to:

$$
\forall a \forall b[(b, a) \notin R \rightarrow(a, b) \notin R]
$$

By the definition of complement, this is equivalent to:

$$
\forall a \forall b[(b, a) \in \bar{R} \rightarrow(a, b) \in \bar{R}]
$$

This is the definition of \bar{R} being symmetric.

3. Constructing DFAs

For each of the following, construct a DFA for the specified language.
(a) Strings of a 's and b 's with odd length $(\Sigma=\{a, b\})$.

Solution:

(b) Strings with an even number of a 's $(\Sigma=\{a, b\})$.

Solution:

(c) Strings with an odd number of b 's $(\Sigma=\{a, b\})$.

Solution:

(d) Strings with an even number of a 's or an odd number of b 's $(\Sigma=\{a, b\})$.

Solution:

4. Structural Induction: Dictionaries
 Recursive definition of a Dictionary (i.e. a Map):

- Basis Case: [] is the empty dictionary
- Recursive Case: If D is a dictionary, and a and b are elements of the universe, then $(a \rightarrow b):: \mathrm{D}$ is a dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

$$
\begin{aligned}
\text { AllKeys }([]) & =[] \\
\text { AllKeys }((a \rightarrow b):: \mathrm{D}) & =a:: \operatorname{AllKeys}(\mathrm{D}) \\
\operatorname{len}([]) & \\
\operatorname{len}((a \rightarrow b):: \mathrm{D}) & =1+\operatorname{len}(\mathrm{D})
\end{aligned}
$$

Recursive functions on Sets:

$$
\begin{array}{ll}
\operatorname{len}([]) & =0 \\
\operatorname{len}(a:: \mathrm{C}) & =1+\operatorname{len}(\mathrm{C})
\end{array}
$$

Statement to prove:

Prove that len $(\mathrm{D})=\operatorname{len}(\operatorname{AllKeys}(\mathrm{D}))$.

Solution:

Define $P(D)$ to be len $(D)=\operatorname{len}(\operatorname{AllKeys}(D))$ for a Dictionary D. We will use structural induction to show $P(D)$ for all dictionaries D .

Base Case: $\mathrm{D}=[]$:
$\operatorname{len}(D)=\operatorname{len}([])=0$ by definition of dictionary len.
Since AllKeys $([])=[]$ by definition of AllKeys, len(AllKeys(D)) $=\operatorname{len}([])=0$ by definition of set len.
Since $0=0, P([])$ is true.
Inductive Hypothesis: Suppose $P(B)$ holds for an arbitrary dictionary B. That is, len $(B)=\operatorname{len}(\operatorname{AllKeys}(B))$. Inductive Step: Let a, b be arbitrary.

$$
\text { Goal: Show } \mathrm{P}((a \rightarrow b):: B) \text { i.e. } \operatorname{len}((a \rightarrow b):: B)=\operatorname{len}(\operatorname{AllI} \operatorname{Keys}((a \rightarrow b):: B))
$$

$$
\begin{aligned}
\operatorname{len}((a \rightarrow b):: \mathrm{B}) & =1+\operatorname{len}(\mathrm{B}) & & \text { [Definition of Len] } \\
& =1+\operatorname{len}(\operatorname{AllKeys}(\mathrm{B})) & & {[\mathrm{H}] } \\
& =\operatorname{len}(a:: \operatorname{AllKeys}(\mathrm{B})) & & {[\text { Definition of Len] }} \\
& =\operatorname{len}(\operatorname{All} \operatorname{Keys}((a \rightarrow b):: \mathrm{B})) & & {[\text { Definition of AllKeys] }}
\end{aligned}
$$

So $\mathrm{P}((a \rightarrow b):: B)$ holds.
Conclusion: Thus, the claim holds for all dictionaries D by structural induction.

5. Structural Induction on Palindromes

Consider the following recursive defintion of the set B of palindrome binary strings:

- Base case: $\varepsilon \in B, 0 \in B, 1 \in B$.
- Recursive steps:
- If $s \in B$, then $0 s 0 \in E, 1 s 1 \in B$, and $s s \in B$.

Now define the functions numOnes (x) and numZeros (x) to be the number of 1 s and 0 s respectively in the string x.

Use structural induction to prove that for any string $s \in B$, numOnes $(s) \cdot \operatorname{numZeros}(s)$ is even.

Solution:

Define $\mathrm{P}(n)$ to be " $2 \mid$ numOnes $(s) \cdot \operatorname{numZeros}(s)$ ". We will show $\mathrm{P}(n)$ for all $n \in B$ by structural induction.
Base Cases:

- $s=\varepsilon$: numOnes $(\varepsilon) \cdot \operatorname{numZeros}(\varepsilon)=0 \cdot 0=0=2 \cdot 0$, thus $\mathrm{P}(\varepsilon)$ holds.
- $s=0$: numOnes $(0) \cdot \operatorname{numZeros}(0)=0 \cdot 1=0=2 \cdot 0$, thus $\mathrm{P}(0)$ holds.
- $s=1$: numOnes $(1) \cdot \operatorname{numZeros}(1)=1 \cdot 0=0=2 \cdot 0$, thus $\mathrm{P}(1)$ holds.

Inductive Hypothesis: Suppose $\mathbf{P}(s)$ holds for an arbitrary string $s \in B$. Inductive Step:

- Case 1: $0 s 0$

$$
\begin{aligned}
\text { numOnes }(0 s 0) \cdot \operatorname{numZeros}(0 s 0) & =(2+\operatorname{numZeros}(s)) \cdot \operatorname{numOnes}(s) \quad(\text { Def. of numZeros, numOnes) } \\
& =2 \cdot \operatorname{numOnes}(s)+\operatorname{numZeros}(s) \cdot \operatorname{numOnes}(s)
\end{aligned}
$$

By the I.H., $2 \mid$ numZeros $(s) \cdot n u m O n e s(s)$, thus there is an integer k s.t. numZeros $(s) \cdot n u m O n e s(s)=2 \cdot k$. We can substitute this to get $2 \cdot$ numOnes $(s)+2 \cdot k$, which we can rearrange to get $2 \cdot($ numOnes $(s)+k)$, thus $2 \mid$ numOnes $(0 s 0) \cdot n u m Z e r o s(0 s 0)$ and $\mathrm{P}(0 s 0)$ holds.

- Case 2: $1 s 1$

$$
\begin{aligned}
\operatorname{numOnes}(1 s 1) \cdot \operatorname{numZeros}(1 s 1) & =\operatorname{numZeros}(s) \cdot(2+\operatorname{numOnes}(s)) \quad(\text { Def. of numZeros, numOnes) } \\
& =2 \cdot \operatorname{numZeros}(s)+\operatorname{numZeros}(s) \cdot \operatorname{numOnes}(s)
\end{aligned}
$$

By the I.H., $2 \mid$ numZeros $(s) \cdot n u m O n e s(s)$, thus there is an integer k s.t. numZeros $(s) \cdot n u m O n e s(s)=2 \cdot k$. We can substitute this to get $2 \cdot \operatorname{numZeros}(s)+2 \cdot k$, which we can rearrange to get $2 \cdot($ numZeros $(s)+k)$, thus $2 \mid$ numOnes $(1 s 1) \cdot n u m Z e r o s(1 s 1)$ and $\mathrm{P}(1 s 1)$ holds.

- Case 3: ss

$$
\begin{aligned}
\operatorname{numOnes}(s s) \cdot \operatorname{numZeros}(s s) & =(2 \cdot \operatorname{numOnes}(s)) \cdot(2 \cdot \operatorname{numZeros}(s)) \quad \text { (Def. of numZeros, numOnes) } \\
& =4 \cdot \operatorname{numOnes}(s) \cdot \operatorname{numZeros}(s)
\end{aligned}
$$

By the I.H., $2 \mid$ numZeros $(s) \cdot n u m O n e s(s)$, thus there is an integer k s.t. numZeros $(s) \cdot n u m O n e s(s)=2 \cdot k$. We can substitute this to get $4 \cdot 2 \cdot k=2 \cdot(4 \cdot k)$, thus $2 \mid$ numOnes $(s s) \cdot$ numZeros $(s s)$ and $\mathrm{P}(s s)$ holds.

Thus, $\mathrm{P}(s)$ holds for all $s \in B$ by structural induction.

