0. Conceptual Review
(a) Regular expression rules:
Basis: ϵ, a for $a \in \Sigma$
Recursive: If A, B are regular expressions, $(A \cup B), AB$, and A^* are regular expressions.

1. Regular Expressions Warmup
Consider the following Regular Expression (RegEx):

$$1(45 \cup 54)^*1$$

List 5 strings accepted by the RegEx and 5 strings from $T := \{1, 4, 5\}^*$ rejected by the RegEx. Then, summarize this RegEx in your own words.

Solution:

Accepted:
- 1451
- 1541
- 145541
- 1454545451
- 11

Rejected:
- 1
- 1441
- 45
- 14451
- 111

This RegEx accepts exactly those strings that start and end with a 1, and have zero or more pairs of 45 or 54 in the middle.
2. Context Free Grammars Warmup
Consider the following CFG which generates strings from the language $V := \{0, 1, 2, 3, 4\}^*$

$$
S \rightarrow 0X4 \\
X \rightarrow 1X3 \mid 2
$$

List 5 strings generated by the CFG and 5 strings from V not generated by the CFG. Then, summarize this CFG in your own words.

Solution:

Accepted:
- 024
- 01234
- 0112334
- 011123334
- 01111233334

Rejected:
- ϵ
- 2
- 0244
- 011234
- 10234

This CFG is all strings of the form $0 \ 1^m \ 2 \ 3^m \ 4$, where $m \geq 0$. That is, it’s all strings made of one 0, followed by zero or more 1’s, followed by a 2, followed by the same number of 3’s as 1’s, followed by one 4.

3. Simplify the RegEx
Consider the following Regular Expression (RegEx):

$$
0^* (0 \cup 1)^* ((01) \cup (11) \cup (10) \cup (00)) 1^* (0 \cup 1)^*
$$

List 3 strings accepted by the RegEx and 3 strings from $S := \{0, 1\}^*$ rejected by the RegEx. Then, summarize this RegEx in your own words and write a simpler RegEx that accepts exactly the same set of strings.

Solution:

Accepted:
- 01
- 10
- 10100100101

Rejected:
- ϵ
- 0
- 1

This RegEx accepts all binary strings that are 2 or more characters long. A simpler RegEx for this is $(0 \cup 1)(0 \cup 1)(0 \cup 1)^*$.
4. Constructing RegExs and CFGs

For each of the following, construct a regular expression and CFG for the specified language.

(a) Strings from the language $S := \{a\}^*$ with an even number of a's.

Solution:

$$\begin{align*}
(aa)^* \\
S &\rightarrow aaS|\varepsilon
\end{align*}$$

(b) Strings from the language $S := \{a, b\}^*$ with an even number of a's.

Solution:

$$\begin{align*}
b^*(b^*ab^*ab^*)^* \\
S &\rightarrow bS|aSaS|\varepsilon
\end{align*}$$

(c) Strings from the language $S := \{a, b\}^*$ with odd length.

Solution:

$$\begin{align*}
(aa \cup ab \cup ba \cup bb)^*(a \cup b) \\
S &\rightarrow CS\varepsilon \\
C &\rightarrow aa\varepsilon | abC | baC | bbC | \varepsilon
\end{align*}$$

(d) (Challenge) Strings from the language $S := \{a, b\}^*$ with an even number of a's or an odd number of b's.

Solution:

$$\begin{align*}
b^*(b^*ab^*ab^*)^* \cup (a^* \cup a^*ba^*ba^*)^*b(a^* \cup a^*ba^*ba^*)^* \\
S &\rightarrow E|bO \\
E &\rightarrow EE|aEa|b|\varepsilon \\
O &\rightarrow OO|bO|a|\varepsilon
\end{align*}$$
5. Structural Induction: CFGs
Consider the following CFG:

\[S \rightarrow SS \mid 0S1 \mid 1S0 \mid \epsilon \]

Prove that every string generated by this CFG has an equal number of 1’s and 0’s.

Hint 1: Start by converting this CFG to a recursively defined set.

Hint 2: You may wish to define the functions \(\#_0(x), \#_1(x) \) on a string \(x \).

Solution:
First we observe that the language defined by this CFG can be represented by a recursively defined set. Define a set \(S \) as follows:

- **Basis Rule:** \(\epsilon \in S \)
- **Recursive Rule:** If \(x, y \in S \), then \(0x1, 1x0, xy \in S \).

Now we perform structural induction on the recursively defined set. Define the functions \(\#_0(t), \#_1(t) \) to be the number of 0’s and 1’s respectively in the string \(t \).

Proof. For a string \(t \), let \(P(t) \) be defined as "\(\#_0(t) = \#_1(t) \)". We will prove \(P(t) \) is true for all strings \(t \in S \) by structural induction.

Base Case \((t = \epsilon)\): By definition, the empty string contains no characters, so \(\#_0(\epsilon) = 0 = \#_1(\epsilon) \)

Inductive Hypothesis: Suppose \(P(x) \) and \(P(y) \) hold for arbitrary strings \(x, y \in S \).

Inductive Step:
Case 1: Goal: show \(P(0x1) \).
By the IH, \(\#_0(x) = \#_1(x) \). Then observe that:

\[\#_0(0x1) = \#_0(x) + 1 = \#_1(x) + 1 = \#_1(0x1) \]

Therefore \(\#_0(0x1) = \#_1(0x1) \). This proves \(P(0x1) \).

Case 2: Goal: show \(P(1x0) \)
By the IH, \(\#_0(x) = \#_1(x) \). Then observe that:

\[\#_0(1x0) = \#_0(x) + 1 = \#_1(x) + 1 = \#_1(1x0) \]

Therefore \(\#_0(1x0) = \#_1(1x0) \). This proves \(P(1x0) \).

Case 3: Goal: show \(P(xy) \)
By the IH, \(\#_0(x) = \#_1(x) \) and \(\#_0(y) = \#_1(y) \). Then observe that:

\[\#_0(xy) = \#_0(x) + \#_0(y) = \#_1(x) + \#_1(y) = \#_1(xy) \]

Therefore \(\#_0(xy) = \#_1(xy) \). This proves \(P(xy) \).
So by structural induction, \(P(t) \) is true for all strings \(t \in S \). \(\square \)

Since the recursively defined set, \(S \), is exactly the set of strings generated by the CFG, we have proved that the statement is true for every string generated by the CFG too.