Week 7 Workshop Solutions

0. Finish the Induction Proof

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=1$ for $n=1$
$f(2)=4$ for $n=2$
$f(3)=9$ for $n=3$
$f(n)=f(n-1)-f(n-2)+f(n-3)+2(2 n-3)$ for $n \geq 4$
Prove by strong induction that for all $n \geq 1, f(n)=n^{2}$.

Complete the induction proof below.

Solution:

1 Let $\mathrm{P}(n)$ be defined as " $f(n)=n^{2}$ ". We will prove $P(n)$ is true for all integers $n \geq 1$ by strong induction.
2 Base Cases ($n=1,2,3$):

- $n=1: f(1)=1=1^{2}$.
- $n=2: f(2)=4=2^{2}$.
- $n=3: f(3)=9=3^{2}$

So the base cases hold.
3 Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 3, \mathrm{P}(j)$ is true for $1 \leq j \leq k$.
4 Inductive Step:
Goal: Show $P(k+1)$, i.e. show that $f(k+1)=(k+1)^{2}$.

$$
\begin{array}{rlrl}
f(k+1) & =f(k+1-1)-f(k+1-2)+f(k+1-3)+2(2(k+1)-3) & & \text { Definition of } \mathrm{f} \\
& =f(k)-f(k-1)+f(k-2)+2(2 k-1) & & \\
& =k^{2}-(k-1)^{2}+(k-2)^{2}+2(2 k-1) & & \\
& =k^{2}-\left(k^{2}-2 k+1\right)+\left(k^{2}-4 k+4\right)+4 k-2 & \\
& =\left(k^{2}-k^{2}+k^{2}\right)+(2 k-4 k+4 k)+(-1+4-2) & & \\
& =k^{2}+2 k+1 & & \\
& =(k+1)^{2} & &
\end{array}
$$

So $\mathrm{P}(k+1)$ holds.
5 Conclusion: So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq 1$.

1. Prove the inequality

Prove by induction on n that for all $n \in \mathbb{N}$ the inequality $(3+\pi)^{n} \geq 3^{n}+n \pi 3^{n-1}$ is true.
Solution:

1. Let $P(n)$ be " $(3+\pi)^{n} \geq 3^{n}+n \pi 3^{n-1 " . ~ W e ~ w i l l ~ p r o v e ~} P(n)$ is true for all $n \in \mathbb{N}$, by induction.
2. Base case $(\mathrm{n}=0):(3+\pi)^{0}=1$ and $3^{0}+0 \cdot \pi \cdot 3^{-1}=1$, since $1 \geq 1, P(0)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \in \mathbb{N}$.

4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $(3+\pi)^{k+1} \geq 3^{k+1}+(k+1) \pi 3^{(k+1)-1}=3^{k+1}+(k+1) \pi 3^{k}$

$$
\begin{aligned}
(3+\pi)^{k+1} & =(3+\pi)^{k} \cdot(3+\pi) \\
& \geq\left(3^{k}+k 3^{k-1} \pi\right) \cdot(3+\pi) \\
& =3 \cdot 3^{k}+3^{k} \pi+3 k 3^{k-1} \pi+k 3^{k-1} \pi^{2} \\
& =3^{k+1}+3^{k} \pi+k 3^{k} \pi+k 3^{k-1} \pi^{2} \\
& =3^{k+1}+(k+1) 3^{k} \pi+k 3^{k-1} \pi^{2} \\
& \geq 3^{k+1}+(k+1) \pi 3^{k}
\end{aligned}
$$

(By I.H., $(3+\pi) \geq 0$)
(Distributive property)
(Simplify)
(Factor out $(k+1)$)
$\left(k 3^{k-1} \pi^{2} \geq 0\right)$
5. So by induction, $P(n)$ is true for all $n \in \mathbb{N}$.

2. Inductively Odd

An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and needs your help proving that it is correct.

```
public static boolean oddr(int n) {
    if (n == 0)
        return False;
    else
        return !oddr(n-1);
}
```

Help the student by writing an inductive proof to prove that for all integers $n \geq 0$, the method oddr returns True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions $\operatorname{Odd}(n):=\exists x \in \mathbb{Z}(n=2 x+1)$ and $\operatorname{Even}(n):=\exists x \in \mathbb{Z}(n=2 x)$; True $=$ False and ! False = True.

Solution:

Let $\mathrm{P}(n)$ be "oddr(n) returns True if n is odd, or False if n is even". We will show that $\mathrm{P}(n)$ is true for all integers $n \geq 0$ by induction on n.

Base Case: $(\mathrm{n}=\underline{0})$
0 is even, so $\mathrm{P}(0)$ is true if oddr(0) returns False, which is exactly the base case of oddr, so $\mathrm{P}(0)$ is true.
Inductive Hypothesis: Suppose $\mathrm{P}(k)$ is true for an arbitrary integer $k \geq 0$.

Inductive Step:

- Case 1: $k+1$ is even.

If $k+1$ is even, then there is an integer x s.t. $k+1=2 x$, so then $k=2 x-1=2(x-1)+1$, so therefore k is odd. We know that since $k+1>0$, oddr $(\mathrm{k}+1)$ should return !oddr(k). By the Inductive Hypothesis, we know that since k is odd, oddr(k) returns True, so oddr(k+1) returns !oddr(k)= False, and $k+1$ is even, therefore $\mathrm{P}(\mathrm{k}+1)$ is true.

- Case 2: $k+1$ is odd.

If $k+1$ is odd, then there is an integer x s.t. $k+1=2 x+1$, so then $k=2 x$ and therefore k is even. We know that since $k+1>0$, oddr $(\mathrm{k}+1)$ should return $!\operatorname{oddr}(\mathrm{k})$. By the Inductive Hypothesis, we know that since k is even, oddr(k) returns False, so oddr($\mathrm{k}+1$) returns $\operatorname{oddr}(\mathrm{k})=\operatorname{True}$, and $k+1$ is odd, therefore $P(k+1)$ is true.

Then $\mathrm{P}(k+1)$ is true for all cases. Thus, we have shown $\mathrm{P}(n)$ is true for all integers $n \geq 0$ by induction.

3. Strong Induction

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=3$
$f(2)=5$
$f(n)=2 f(n-1)-f(n-2)$
Prove using strong induction that for all $n \geq 1, f(n)=2 n+1$.

Solution:

Let $P(n)$ be the claim that $f(n)=2 n+1$. We will prove $P(n)$ for all $n \geq 1$ by strong induction.
Base case:
$f(1)=3=2 * 1+1$
$f(2)=5=2 * 2+1$
So $P(1)$ and $P(2)$ are both true.
Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 2, \mathrm{P}(2) \wedge \ldots \wedge \mathrm{P}(k)$ hold.

Inductive Step:

Goal: Prove $P(k+1)$, in other words, $f(k+1)=2(k+1)+1$

$$
\begin{aligned}
f(k+1) & =2 f(k)-f(k-1) \\
& =2(2(k)+1)-(2(k-1)-1) \quad \text { by the IH } \\
& =4 k+2-(2 k-1) \\
& =2 k+3 \\
& =2(k+1)+1
\end{aligned}
$$

Therefore, $f(k+1)=2(k+1)+1$, so $P(k+1)$ holds.
Conclusion: Therefore, $P(n)$ holds for all numbers $n \geq 1$ by strong induction.

4. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7 . Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". For example, $P(3)$ is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that $\mathrm{P}(n)$ is true for any $n \geq 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

Solution:

Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". We will prove $P(n)$ is true for all integers $n \geq 18$ by strong induction.

Base Cases: $(n=18,19,20,21)$:

- $n=18: 18$ packs of candy can be made up of 2 packs of 7 and 1 pack of $4(18=2 * 7+1 * 4)$.
- $n=19: 19$ packs of candy can be made up of 1 pack of 7 and 3 packs of $4(19=1 * 7+3 * 4)$.
- $n=20: 20$ packs of candy can be made up of 5 packs of $4(20=5 * 4)$.
- $n=21: 21$ packs of candy can be made up of 3 packs of $7(21=3 * 7)$.

Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 21, \mathrm{P}(18) \wedge \ldots \wedge \mathrm{P}(k)$ hold.

Inductive Step:

Goal: Show $P(k+1)$, i.e. show that we can buy $k+1$ packs of candy.
We want to buy $k+1$ packs of candy. By the I.H., we can buy exactly $k-3$ packs, so we can add another pack of 4 packs in order to buy $k+1$ packs of candy, so $\mathrm{P}(k+1)$ is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume $\mathrm{P}(k-3)$, and add 4 to achieve $\mathrm{P}(k+1)$. Therefore we needed to be able to assume that $k-3 \geq 18$. Adding 3 to both sides, we needed to be able to assume that $k \geq 21$. So, we have to prove the base cases up to 21 , that is: $18,19,20,21$.
Another way to think about this is that we had to use a fact from 4 steps back from $k+1$ to $k-3$ in the IS, so we needed 4 base cases.

Conclusion: So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq 18$.

5. Structural Induction: Divisible by 4

Define a set \mathfrak{B} of numbers by:

- 4 and 12 are in \mathfrak{B}
- If $x \in \mathfrak{B}$ and $y \in \mathfrak{B}$, then $x+y \in \mathfrak{B}$ and $x-y \in \mathfrak{B}$

Prove by induction that every number in \mathfrak{B} is divisible by 4 .

Complete the proof below:

Solution:

Let $P(b)$ be the claim that $4 \mid b$. We will prove $P(b)$ is true for all numbers $b \in \mathfrak{B}$ by structural induction.

Base Case:

- $4 \mid 4$ is trivially true, so $P(4)$ holds.
- $12=3 \cdot 4$, so $4 \mid 12$ and $P(12)$ holds.

Inductive Hypothesis: Suppose $P(x)$ and $P(y)$ for some arbitrary $x, y \in \mathfrak{B}$. Inductive Step:

Goal: Prove $P(x+y)$ and $P(x-y)$
Per the IH, $4 \mid x$ and $4 \mid y$. By the definition of divides, $x=4 k$ and $y=4 j$ for some integers k, j. Then, $x+y=4 k+4 j=4(k+j)$. Since integers are closed under addition, $k+j$ is an integer, so $4 \mid x+y$ and $P(x+y)$ holds.
Similarly, $x-y=4 k-4 j=4(k-j)=4(k+(-1 \cdot j))$. Since integers are closed under addition and multiplication, and -1 is an integer, we see that $k-j$ must be an integer. Therefore, by the definition of divides, $4 \mid x-y$ and $P(x-y)$ holds.
So, $P(t)$ holds in both cases.
Conclusion: Therefore, $P(b)$ holds for all numbers $b \in \mathfrak{B}$.

6. Structural Induction: CharTrees
 Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are CharTrees and $c \in \Sigma$, then $\operatorname{CharTree}(L, c, R)$ is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

- The preorder function returns the preorder traversal of all elements in a CharTree.

$$
\begin{array}{ll}
\operatorname{preorder}(\operatorname{Null}) & =\varepsilon \\
\operatorname{preorder}(\operatorname{CharTree}(L, c, R)) & =c \cdot \operatorname{preorder}(L) \cdot \operatorname{preorder}(R)
\end{array}
$$

- The postorder function returns the postorder traversal of all elements in a CharTree.

```
postorder(Null) = =
postorder(CharTree (L,c,R)) = postorder (L) \cdot postorder (R) }\cdot
```

- The mirror function produces the mirror image of a CharTree.

$$
\begin{array}{ll}
\operatorname{mirror}(\operatorname{Null}) & =\operatorname{Null} \\
\operatorname{mirror}(\operatorname{CharTree}(L, c, R)) & =\operatorname{CharTree}(\operatorname{mirror}(R), c, \operatorname{mirror}(L))
\end{array}
$$

- Finally, for all strings x, let the "reversal" of x (in symbols x^{R}) produce the string in reverse order.

Additional Facts:

You may use the following facts:

- For any strings $x_{1}, \ldots, x_{k}:\left(x_{1} \cdot \ldots \cdot x_{k}\right)^{R}=x_{k}^{R} \cdot \ldots \cdot x_{1}^{R}$
- For any character $c, c^{R}=c$

Statement to Prove:

Show that for every CharTree T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every CharTree, T : $[\operatorname{preorder}(T)]^{R}=$ postorder(mirror $(T))$.

There is an example and space to work on the next page.

Example for Intuition:

Let T_{i} be the tree above.
(T_{i}) ="abcd".
T_{i} is built as (null, a, U)
Where U is (V, b, W),
This tree is $\left(T_{i}\right)$.
$V=(n u l l, c, n u l l), W=(n u l l, d, n u l l)$.
$\left(\left(T_{i}\right)\right)=$ "dcba",
"dcba" is the reversal of "abcd" so
$\left[\operatorname{preorder}\left(T_{i}\right)\right]^{R}=\operatorname{postorder}\left(\operatorname{mirror}\left(T_{i}\right)\right)$ holds for T_{i}

Solution:

Let $P(T)$ be " $[\operatorname{preorder}(T)]^{R}=\operatorname{postorder}(\operatorname{mirror}(T))$ ". We show $P(T)$ holds for all CharTrees T by structural induction.
Base case $(T=\operatorname{Null}): \operatorname{preorder}(T)^{R}=\varepsilon^{R}=\varepsilon=\operatorname{postorder}(\mathrm{Null})=\operatorname{postorder}(\operatorname{mirror}(\mathrm{Null}))$, so $P(\mathrm{Null})$ holds.
Inductive hypothesis: Suppose $P(L) \wedge P(R)$ for arbitrary CharTrees L, R.
Inductive step:
We want to show $P(\operatorname{CharTree}(L, c, R))$,
i.e. $[\operatorname{preorder}(\operatorname{CharTree}(L, c, R))]^{R}=\operatorname{postorder}(\operatorname{mirror}(\operatorname{CharTree}(L, c, R)))$.

Let c be an arbitrary element in Σ, and let $T=\operatorname{CharTree}(L, c, R)$

$$
\begin{array}{rlr}
(T)^{R} & =[c \cdot(L) \cdot(R)]^{R} & \text { defn of preorder } \\
& =(R)^{R} \cdot(L)^{R} \cdot c^{R} & \text { Fact } 1 \\
& =(R)^{R} \cdot(L)^{R} \cdot c & \text { Fact } 2 \\
& =((R)) \cdot((L)) \cdot c & \text { by I.H. } \\
& =(\operatorname{CharTree}((R), c,(L)) & \text { recursive defn of postorder } \\
& =((\operatorname{CharTree}(L, c, R))) & \text { recursive defn of mirror } \\
& =((T)) & \text { defn of } T
\end{array}
$$

So $P($ CharTree $(L, c, R))$ holds.
By the principle of induction, $P(T)$ holds for all CharTrees T.

