CSE 390Z: Mathematics for Computation Workshop

Week 7 Workshop Solutions

0. Finish the Induction Proof
Consider the function f(n) defined for integers n > 1 as follows:
f)y=1forn=1
f(2)=4forn=2
fB)=9forn=3
fm)=fn—=1)—f(n—2)+ f(n—3)+2(2n—3) forn > 4
Prove by strong induction that for all n > 1, f(n) = n?.
Complete the induction proof below.
Solution:
1 Let P(n) be defined as " f(n) = n". We will prove P(n) is true for all integers n > 1 by strong induction.

2 Base Cases (n =1,2,3):

»n=1: f(1)=1=12
= =2 f(2)=4=22%
= n=23 f(3)=9=32

So the base cases hold.
3 Inductive Hypothesis: Suppose for some arbitrary integer k > 3, P(j) is true for 1 < j < k.

4 Inductive Step:

Goal: Show P(k + 1), i.e. show that f(k+1) = (k+1)2

fk+)=fk+1-1)—f(k+1-2)+ f(k+1-3)+2(2(k+1)—3) Definition of f
= f(k) = f(k=1)+ f(k—=2)+2(2k - 1)
=k — (k- 1%+ (k-2 +2(2k - 1) By IH
=k?— (k* =2k + 1)+ (k* — 4k +4) + 4k — 2
= (K2 — k2 + k) + 2k —dk +4k) + (-1 +4—2)
=k*+2k+1
= (k+1)?

So P(k + 1) holds.

5 Conclusion: So by strong induction, P(n) is true for all integers n > 1.



1. Prove the inequality
Prove by induction on n that for all n € N the inequality (3 + 7)™ > 3" 4+ nm3" ! is true.
Solution:
1. Let P(n) be "(3+m)™ > 3" + nx3"1". We will prove P(n) is true for all n € N, by induction.

2. Base case (n =0): 3+ 7m)°=1and3°+0-7-371 =1, since 1 > 1, P(0) is true.
3. Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer k € N.

4. Inductive Step:

Goal: Show P(k+1), i.e. show (3+m)Ftt > 3k (k4 1)7p3k+D =1 = 3k+1 4 (k4 1)73F

B+m)ftt =@ +m)F-(3+7) (Factor out (3 + 7))
> (3F 4 k3F1n) . (34 7) (By LH., (34 ) > 0)
=3.3F 4+ 3Fr 4 3k3F x4 k3R 112 (Distributive property)
=38! 1 3Fr 4 k3R 4 k3P In? (Simplify)
=38 (k +1)3Fm 4 k38 1x2 (Factor out (k + 1))
>3k 4 (k4 1)7n3* (k3k172 > 0)

5. So by induction, P(n) is true for all n € N.



2. Inductively Odd

An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and
needs your help proving that it is correct.

public static boolean oddr(int n) {

if (n == 0)
return False;
else

return !oddr(n—1);

}

Help the student by writing an inductive proof to prove that for all integers n > 0, the method oddr returns
True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions
Odd(n) := 3z € Z(n =2z + 1) and Even(n) := 3x € Z(n = 2x); !True = False and !False = True.

Solution:

Let P(n) be "oddr(n) returns True if n is odd, or False if n is even". We will show that P(n) is true for all
integers n > 0 by induction on n.

Base Case: (n = 0)

0 is even, so P(0) is true if oddr(0) returns False, which is exactly the base case of oddr, so P(0) is true.
Inductive Hypothesis: Suppose P(k) is true for an arbitrary integer k£ > 0.

Inductive Step:

= Case 1: £+ 1 is even.

If £+ 1 is even, then there is an integer x s.t. k+1 = 2z, so then k =2z —1 = 2(x — 1) + 1, so therefore
k is odd. We know that since k41 > 0, oddr(k+1) should return !oddr(k). By the Inductive Hypothesis, we
know that since k is odd, oddr(k) returns True, so oddr(k+1) returns !oddr(k)= False, and k£ + 1 is even,
therefore P(k+1) is true.

= Case 2: k+ 1 is odd.

If K+ 1 is odd, then there is an integer x s.t. k+ 1 = 2x + 1, so then k = 2x and therefore k is even.
We know that since k + 1 > 0, oddr(k+1) should return !oddr(k). By the Inductive Hypothesis, we know
that since k is even, oddr(k) returns False, so oddr(k+1) returns !oddr(k)= True, and k 4+ 1 is odd, there-
fore P(k+1) is true.

Then P(k 4 1) is true for all cases. Thus, we have shown P(n) is true for all integers n > 0 by induction.



3. Strong Induction

Consider the function f(n) defined for integers n > 1 as follows:
f(1)=3

f(2)=5

fn)=2f(n—=1) = f(n-2)

Prove using strong induction that for all n > 1, f(n) = 2n + 1.

Solution:

Let P(n) be the claim that f(n) = 2n + 1. We will prove P(n) for all n > 1 by strong induction.
Base case:

f1)=3=2x1+1

f2)=5=2%2+1

So P(1) and P(2) are both true.

Inductive Hypothesis: Suppose for some arbitrary integer k > 2, P(2) A... AP(k) hold.
Inductive Step:

’Goal: Prove P(k+ 1) , in other words, f(k+ 1) =2(k+1)+1 ‘

fk+1) =2f(k) - f(k—1)

=202(k) +1) — (2(k — 1) — 1) by the IH
—dk+2— (2k—1)

=2k +3

=2(k+1)+1

Therefore, f(k+1) =2(k+1)+1, so P(k+ 1) holds.
Conclusion: Therefore, P(n) holds for all numbers n > 1 by strong induction.



4. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy".
For example, P(3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it
turns out that P(n) is true for any n > 18. Use strong induction on 7 to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.

Solution:
Let P(n) be defined as "You are able to buy n packs of candy". We will prove P(n) is true for all integers
n > 18 by strong induction.

Base Cases: (n = 18,19,20,21):

» n = 18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18 =27+ 1% 4).
» n =19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19 =1% 7+ 3x4).
» n = 20: 20 packs of candy can be made up of 5 packs of 4 (20 = 5% 4).
» n = 21: 21 packs of candy can be made up of 3 packs of 7 (21 =3 7).

Inductive Hypothesis: Suppose for some arbitrary integer k > 21, P(18) A... AP(k) hold.

Inductive Step:

Goal: Show P(k + 1), i.e. show that we can buy k£ + 1 packs of candy. ‘

We want to buy k+ 1 packs of candy. By the I.H., we can buy exactly k — 3 packs, so we can add another
pack of 4 packs in order to buy k + 1 packs of candy, so P(k + 1) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k — 3),
and add 4 to achieve P(k + 1). Therefore we needed to be able to assume that £ — 3 > 18. Adding 3 to
both sides, we needed to be able to assume that £ > 21. So, we have to prove the base cases up to 21,
that is: 18,19, 20, 21.

Another way to think about this is that we had to use a fact from 4 steps back from k+ 1 to kK — 3 in
the IS, so we needed 4 base cases.

Conclusion: So by strong induction, P(n) is true for all integers n > 18.



5. Structural Induction: Divisible by 4
Define a set B of numbers by:
» 4and 12 are in B

s fzeBandyeB, thenx+yeBandx—yeB

Prove by induction that every number in B is divisible by 4.
Complete the proof below:

Solution:

Let P(b) be the claim that 4 | b. We will prove P(b) is true for all numbers b € 98 by structural induction.
Base Case:

= 4|4 is trivially true, so P(4) holds.
» 12=3-4,s04 |12 and P(12) holds.

Inductive Hypothesis: Suppose P(z) and P(y) for some arbitrary z,y € B.
Inductive Step:

‘ Goal: Prove P(z+y) and P(z —y) ‘

Per the IH, 4 | = and 4 | y. By the definition of divides, z = 4k and y = 4j for some integers k,j. Then,
x+y =4k + 45 = 4(k + j). Since integers are closed under addition, k + j is an integer, so 4 | z + y and
P(x +y) holds.

Similarly, © —y = 4k — 45 = 4(k — j) = 4(k + (=1 - j)). Since integers are closed under addition and
multiplication, and —1 is an integer, we see that k — j must be an integer. Therefore, by the definition of
divides, 4 | z — y and P(x — y) holds.

So, P(t) holds in both cases.

Conclusion: Therefore, P(b) holds for all numbers b € 8.



6. Structural Induction: CharTrees
Recursive Definition of CharTrees:

» Basis Step: Null is a CharTree
= Recursive Step: If L, R are CharTrees and ¢ € ¥, then CharTree(L, ¢, R) is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

The preorder function returns the preorder traversal of all elements in a CharTree.

preorder(Null) =c
preorder(CharTree(L,c, R)) = c- preorder(L) - preorder(R)

The postorder function returns the postorder traversal of all elements in a CharTree.

postorder(Null) =¢
postorder(CharTree(L,c, R)) = postorder(L) - postorder(R) - ¢

The mirror function produces the mirror image of a CharTree.

mirror(Null) = Null
mirror(CharTree(L,c, R)) = CharTree(mirror(R),c, mirror(L))

Finally, for all strings z, let the “reversal” of z (in symbols *) produce the string in reverse order.

Additional Facts:
You may use the following facts:

= For any strings z1, ..., 73 (21 - ... - 23)F = ka szl

R:

= For any character ¢, ¢ c

Statement to Prove:
Show that for every CharTree T, the reversal of the preorder traversal of T' is the same as the postorder
traversal of the mirror of 7. In notation, you should prove that for every CharTree, T: [preorder(T)]% =
postorder(mirror(T)).

There is an example and space to work on the next page.



Example for Intuition:

Let T; be the tree above.

(T;) ="abcd". This tree is (T3).

T; is built as (null,a,U) ((T3)) ="dcba",

Where U is (V,b, W), “dcba” is the reversal of “abcd” so

V = (null, ¢, null), W = (null, d,null). [preorder(T;)] ¥ = postorder(mirror(T;)) holds for T;
Solution:

Let P(T) be “[preorder(T)]" = postorder(mirror(T"))". We show P(T) holds for all CharTrees T by structural
induction.

Base case (7' = Null): preorder(T)f* = £f! = ¢ = postorder(Null) = postorder(mirror(Null)), so P(Null)
holds.

Inductive hypothesis: Suppose P(L) A P(R) for arbitrary CharTrees L, R.

Inductive step:

We want to show P(CharTree(L, ¢, R)),

i.e. [preorder(CharTree(L,c, R))]® = postorder(mirror(CharTree(L,c, R))).

Let ¢ be an arbitrary element in X, and let 7' = CharTree(L, ¢, R)

(D) =[c- (L) - (R)? defn of preorder
(R)E (L) B Fact 1

= (R (L)E ¢ Fact 2

— (R) - (L) - by LH.

= (CharTree((R), ¢, (L)) recursive defn of postorder

= ((CharTree(L, ¢, R))) recursive defn of mirror
=((T)) defn of T

So P(CharTree(L, ¢, R)) holds.
By the principle of induction, P(T') holds for all CharTrees T



