0. Finish the Induction Proof

Consider the function \(f(n) \) defined for integers \(n \geq 1 \) as follows:
\[
\begin{align*}
f(1) &= 1 \\
f(2) &= 4 \\
f(3) &= 9 \\
f(n) &= f(n-1) - f(n-2) + f(n-3) + 2(2n-3) \quad \text{for } n \geq 4
\end{align*}
\]

Prove by strong induction that for all \(n \geq 1 \), \(f(n) = n^2 \).

Complete the induction proof below.

Solution:

1. Let \(P(n) \) be defined as "\(f(n) = n^2 \)." We will prove \(P(n) \) is true for all integers \(n \geq 1 \) by strong induction.

2. **Base Cases** \((n = 1, 2, 3)\):
 - \(n = 1 \): \(f(1) = 1 = 1^2 \).
 - \(n = 2 \): \(f(2) = 4 = 2^2 \).
 - \(n = 3 \): \(f(3) = 9 = 3^2 \)

 So the base cases hold.

3. **Inductive Hypothesis:** Suppose for some arbitrary integer \(k \geq 3 \), \(P(j) \) is true for \(1 \leq j \leq k \).

4. **Inductive Step:**

 Goal: Show \(P(k+1) \), i.e. show that \(f(k+1) = (k + 1)^2 \).

 \[
 \begin{align*}
f(k + 1) &= f(k + 1 - 1) - f(k + 1 - 2) + f(k + 1 - 3) + 2(2(k + 1) - 3) & \text{Definition of } f \\
&= f(k) - f(k - 1) + f(k - 2) + 2(2k - 1) \\
&= k^2 - (k - 1)^2 + (k - 2)^2 + 2(2k - 1) & \text{By IH} \\
&= k^2 - (k^2 - 2k + 1) + (k^2 - 4k + 4) + 4k - 2 \\
&= (k^2 - k^2 + k^2) + (2k - 4k + 4k) + (-1 + 4 - 2) \\
&= k^2 + 2k + 1 \\
&= (k + 1)^2
\end{align*}
\]

 So \(P(k+1) \) holds.

5. **Conclusion:** So by strong induction, \(P(n) \) is true for all integers \(n \geq 1 \).
1. Prove the inequality
Prove by induction on n that for all $n \in \mathbb{N}$ the inequality $(3 + \pi)^n \geq 3^n + n\pi \cdot 3^{n-1}$ is true.

Solution:
1. Let $P(n)$ be "$(3 + \pi)^n \geq 3^n + n\pi \cdot 3^{n-1}$". We will prove $P(n)$ is true for all $n \in \mathbb{N}$, by induction.
2. Base case ($n = 0$): $(3 + \pi)^0 = 1$ and $3^0 + 0 \cdot \pi \cdot 3^{-1} = 1$, since $1 \geq 1$, $P(0)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \in \mathbb{N}$.
4. Inductive Step:

 Goal: Show $P(k+1)$, i.e. show $(3 + \pi)^{k+1} \geq 3^{k+1} + (k+1)\pi \cdot 3^{(k+1)-1} = 3^{k+1} + (k+1)\pi \cdot 3^{k}$

 \[
 (3 + \pi)^{k+1} = (3 + \pi)^k \cdot (3 + \pi)
 \geq (3^k + k\pi \cdot 3^{k-1}) \cdot (3 + \pi)
 = 3 \cdot 3^k + 3^k \pi + 3k^2 \pi + k3^{k-1} \pi^2
 = 3^{k+1} + 3^k \pi + k3^{k-1} \pi^2
 = 3^{k+1} + (k + 1)3^k \pi + k3^{k-1} \pi^2
 \geq 3^{k+1} + (k + 1)\pi \cdot 3^k
 \]

 (Factor out $(3 + \pi)$)
 (By I.H., $(3 + \pi) \geq 0$)
 (Distributive property)
 (Simplify)
 (Factor out $(k + 1)$)
 $(k3^{k-1} \pi^2 \geq 0)$

5. So by induction, $P(n)$ is true for all $n \in \mathbb{N}$.
2. Inductively Odd

An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and needs your help proving that it is correct.

```java
public static boolean oddr(int n) {
    if (n == 0)
        return False;
    else
        return !oddr(n−1);
}
```

Help the student by writing an inductive proof to prove that for all integers \(n \geq 0 \), the method `oddr` returns True if \(n \) is an odd number, and False if \(n \) is not an odd number (i.e. \(n \) is even). You may recall the definitions \(\text{Odd}(n) := \exists x \in \mathbb{Z}(n = 2x + 1) \) and \(\text{Even}(n) := \exists x \in \mathbb{Z}(n = 2x) \); \!True = False and \!False = True.

Solution:

Let \(P(n) \) be "\(\text{oddr}(n) \) returns True if \(n \) is odd, or False if \(n \) is even". We will show that \(P(n) \) is true for all integers \(n \geq 0 \) by induction on \(n \).

Base Case: \((n = 0) \)

0 is even, so \(P(0) \) is true if \(\text{oddr}(0) \) returns False, which is exactly the base case of `oddr`, so \(P(0) \) is true.

Inductive Hypothesis: Suppose \(P(k) \) is true for an arbitrary integer \(k \geq 0 \).

Inductive Step:

- **Case 1:** \(k + 1 \) is even.

 If \(k + 1 \) is even, then there is an integer \(x \) s.t. \(k + 1 = 2x \), so then \(k = 2x - 1 = 2(x - 1) + 1 \), so therefore \(k \) is odd. We know that since \(k + 1 > 0 \), \(\text{oddr}(k+1) \) should return \(\text{!oddr}(k) \). By the Inductive Hypothesis, we know that since \(k \) is odd, \(\text{oddr}(k) \) returns True, so \(\text{oddr}(k+1) \) returns \(\text{!oddr}(k) = \text{False} \), and \(k + 1 \) is even, therefore \(P(k+1) \) is true.

- **Case 2:** \(k + 1 \) is odd.

 If \(k + 1 \) is odd, then there is an integer \(x \) s.t. \(k + 1 = 2x + 1 \), so then \(k = 2x \) and therefore \(k \) is even. We know that since \(k + 1 > 0 \), \(\text{oddr}(k+1) \) should return \(\text{!oddr}(k) \). By the Inductive Hypothesis, we know that since \(k \) is even, \(\text{oddr}(k) \) returns False, so \(\text{oddr}(k+1) \) returns \(\text{!oddr}(k) = \text{True} \), and \(k + 1 \) is odd, therefore \(P(k+1) \) is true.

Then \(P(k + 1) \) is true for all cases. Thus, we have shown \(P(n) \) is true for all integers \(n \geq 0 \) by induction.
3. Strong Induction

Consider the function \(f(n) \) defined for integers \(n \geq 1 \) as follows:
\[
\begin{align*}
 f(1) &= 3 \\
 f(2) &= 5 \\
 f(n) &= 2f(n-1) - f(n-2)
\end{align*}
\]
Prove using strong induction that for all \(n \geq 1 \), \(f(n) = 2n + 1 \).

Solution:

Let \(P(n) \) be the claim that \(f(n) = 2n + 1 \). We will prove \(P(n) \) for all \(n \geq 1 \) by strong induction.

Base case:
\[
\begin{align*}
 f(1) &= 3 = 2 \times 1 + 1 \\
 f(2) &= 5 = 2 \times 2 + 1
\end{align*}
\]
So \(P(1) \) and \(P(2) \) are both true.

Inductive Hypothesis: Suppose for some arbitrary integer \(k \geq 2 \), \(P(2) \land \ldots \land P(k) \) hold.

Inductive Step:

Goal: Prove \(P(k+1) \), in other words, \(f(k+1) = 2(k+1) + 1 \)

\[
\begin{align*}
 f(k+1) &= 2f(k) - f(k-1) \\
 &= 2(2(k+1)) - (2k-1) \\
 &= 4k + 2 - (2k - 1) \\
 &= 2k + 3 \\
 &= 2(k+1) + 1
\end{align*}
\]

Therefore, \(f(k+1) = 2(k+1) + 1 \), so \(P(k+1) \) holds.

Conclusion: Therefore, \(P(n) \) holds for all numbers \(n \geq 1 \) by strong induction.
4. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7. Let \(P(n) \) be defined as "You are able to buy \(n \) packs of candy". For example, \(P(3) \) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that \(P(n) \) is true for any \(n \geq 18 \). Use strong induction on \(n \) to prove this.

Hint: you’ll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

Solution:

Let \(P(n) \) be defined as "You are able to buy \(n \) packs of candy". We will prove \(P(n) \) is true for all integers \(n \geq 18 \) by strong induction.

Base Cases: \((n = 18, 19, 20, 21) \):

- \(n = 18 \): 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (\(18 = 2 \times 7 + 1 \times 4 \)).
- \(n = 19 \): 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (\(19 = 1 \times 7 + 3 \times 4 \)).
- \(n = 20 \): 20 packs of candy can be made up of 5 packs of 4 (\(20 = 5 \times 4 \)).
- \(n = 21 \): 21 packs of candy can be made up of 3 packs of 7 (\(21 = 3 \times 7 \)).

Inductive Hypothesis: Suppose for some arbitrary integer \(k \geq 21 \), \(P(18) \land \ldots \land P(k) \) hold.

Inductive Step:

Goal: Show \(P(k + 1) \), i.e. show that we can buy \(k + 1 \) packs of candy.

We want to buy \(k + 1 \) packs of candy. By the I.H., we can buy exactly \(k - 3 \) packs, so we can add another pack of 4 packs in order to buy \(k + 1 \) packs of candy, so \(P(k + 1) \) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume \(P(k - 3) \), and add 4 to achieve \(P(k + 1) \). Therefore we needed to be able to assume that \(k - 3 \geq 18 \). Adding 3 to both sides, we needed to be able to assume that \(k \geq 21 \). So, we have to prove the base cases up to 21, that is: 18, 19, 20, 21.

Another way to think about this is that we had to use a fact from 4 steps back from \(k + 1 \) to \(k - 3 \) in the IS, so we needed 4 base cases.

Conclusion: So by strong induction, \(P(n) \) is true for all integers \(n \geq 18 \).
5. Structural Induction: Divisible by 4

Define a set \mathcal{B} of numbers by:

- 4 and 12 are in \mathcal{B}
- If $x \in \mathcal{B}$ and $y \in \mathcal{B}$, then $x + y \in \mathcal{B}$ and $x - y \in \mathcal{B}$

Prove by induction that every number in \mathcal{B} is divisible by 4.

Complete the proof below:

Solution:

Let $P(b)$ be the claim that $4 \mid b$. We will prove $P(b)$ is true for all numbers $b \in \mathcal{B}$ by structural induction.

Base Case:

- $4 \mid 4$ is trivially true, so $P(4)$ holds.

- $12 = 3 \cdot 4$, so $4 \mid 12$ and $P(12)$ holds.

Inductive Hypothesis: Suppose $P(x)$ and $P(y)$ for some arbitrary $x, y \in \mathcal{B}$.

Inductive Step:

| Goal: Prove $P(x + y)$ and $P(x - y)$ |

Per the IH, $4 \mid x$ and $4 \mid y$. By the definition of divides, $x = 4k$ and $y = 4j$ for some integers k, j. Then, $x + y = 4k + 4j = 4(k + j)$. Since integers are closed under addition, $k + j$ is an integer, so $4 \mid x + y$ and $P(x + y)$ holds.

Similarly, $x - y = 4k - 4j = 4(k - j) = 4(k + (-1 \cdot j))$. Since integers are closed under addition and multiplication, and -1 is an integer, we see that $k - j$ must be an integer. Therefore, by the definition of divides, $4 \mid x - y$ and $P(x - y)$ holds.

So, $P(t)$ holds in both cases.

Conclusion: Therefore, $P(b)$ holds for all numbers $b \in \mathcal{B}$.
6. Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are CharTrees and $c \in \Sigma$, then CharTree(L, c, R) is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

- The preorder function returns the preorder traversal of all elements in a CharTree.
 \[
 \text{preorder(Null)} = \varepsilon \\
 \text{preorder(CharTree}(L, c, R)) = c \cdot \text{preorder}(L) \cdot \text{preorder}(R)
 \]

- The postorder function returns the postorder traversal of all elements in a CharTree.
 \[
 \text{postorder(Null)} = \varepsilon \\
 \text{postorder(CharTree}(L, c, R)) = \text{postorder}(L) \cdot \text{postorder}(R) \cdot c
 \]

- The mirror function produces the mirror image of a CharTree.
 \[
 \text{mirror(Null)} = \text{Null} \\
 \text{mirror(CharTree}(L, c, R)) = \text{CharTree}(\text{mirror}(R), c, \text{mirror}(L))
 \]

- Finally, for all strings x, let the “reversal” of x (in symbols x^R) produce the string in reverse order.

Additional Facts:
You may use the following facts:

- For any strings x_1, \ldots, x_k: $(x_1 \cdot \ldots \cdot x_k)^R = x_k^R \cdot \ldots \cdot x_1^R$
- For any character c, $c^R = c$

Statement to Prove:
Show that for every CharTree T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every CharTree, T: $(\text{preorder}(T))^R = \text{postorder}(\text{mirror}(T))$.

There is an example and space to work on the next page.
Let T_i be the tree above.
$(T_i) = "abcd".$

This tree is (T_i).
$((T_i)) = "dcba", \quad \text{"dcba" is the reversal of "abcd" so}$

$\text{[preorder}(T_i)\text{]}^R = \text{postorder}(\text{mirror}(T_i)) \text{ holds for } T_i$

Solution:
Let $P(T)$ be $\"[\text{preorder}(T)]^R = \text{postorder}(\text{mirror}(T))\"$. We show $P(T)$ holds for all CharTrees T by structural induction.

Base case ($T = \text{Null}$): $\text{preorder}(T)^R = \varepsilon^R = \varepsilon = \text{postorder}(\text{Null}) = \text{postorder}(\text{mirror}(\text{Null}))$, so $P(\text{Null})$ holds.

Inductive hypothesis: Suppose $P(L) \land P(R)$ for arbitrary CharTrees L, R.

Inductive step:
We want to show $P(\text{CharTree}(L, c, R))$, i.e. $\text{[preorder}($\text{CharTree}(L, c, R)\text{)]}^R = \text{postorder}(\text{mirror}($\text{CharTree}(L, c, R)\text{)))}.$

Let c be an arbitrary element in Σ, and let $T = \text{CharTree}(L, c, R)$

$$(T)^R = [c \cdot (L) \cdot (R)]^R$$

\hspace{1cm} \text{defn of preorder}

$$= (R)^R \cdot (L)^R \cdot c^R$$

\hspace{1cm} \text{Fact 1}

$$= (R)^R \cdot (L)^R \cdot c$$

\hspace{1cm} \text{Fact 2}

$$= ((R)) \cdot ((L)) \cdot c$$

\hspace{1cm} \text{by I.H.}

$$= (\text{CharTree}((R), c, (L)))$$

\hspace{1cm} \text{recursive defn of postorder}

$$= ((\text{CharTree}(L, c, R)))$$

\hspace{1cm} \text{recursive defn of mirror}

$$= (T))$$

\hspace{1cm} \text{defn of } T

So $P(\text{CharTree}(L, c, R))$ holds.

By the principle of induction, $P(T)$ holds for all CharTrees T.