
CSE 390Z: Mathematics for Computation Workshop
Week 7 Workshop Solutions

0. Finish the Induction Proof
Consider the function f(n) defined for integers n ≥ 1 as follows:
f(1) = 1 for n = 1
f(2) = 4 for n = 2
f(3) = 9 for n = 3
f(n) = f(n− 1)− f(n− 2) + f(n− 3) + 2(2n− 3) for n ≥ 4

Prove by strong induction that for all n ≥ 1, f(n) = n2.
Complete the induction proof below.
Solution:

1 Let P(n) be defined as " f(n) = n2". We will prove P (n) is true for all integers n ≥ 1 by strong induction.

2 Base Cases (n = 1, 2, 3):

• n = 1: f(1) = 1 = 12.
• n = 2: f(2) = 4 = 22.
• n = 3: f(3) = 9 = 32

So the base cases hold.

3 Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 3, P(j) is true for 1 ≤ j ≤ k.

4 Inductive Step:

Goal: Show P (k + 1), i.e. show that f(k + 1) = (k + 1)2.

f(k + 1) = f(k + 1− 1)− f(k + 1− 2) + f(k + 1− 3) + 2(2(k + 1)− 3) Definition of f
= f(k)− f(k − 1) + f(k − 2) + 2(2k − 1)

= k2 − (k − 1)2 + (k − 2)2 + 2(2k − 1) By IH
= k2 − (k2 − 2k + 1) + (k2 − 4k + 4) + 4k − 2

= (k2 − k2 + k2) + (2k − 4k + 4k) + (−1 + 4− 2)

= k2 + 2k + 1

= (k + 1)2

So P(k + 1) holds.

5 Conclusion: So by strong induction, P(n) is true for all integers n ≥ 1.

1

1. Prove the inequality
Prove by induction on n that for all n ∈ N the inequality (3 + π)n ≥ 3n + nπ3n−1 is true.
Solution:

1. Let P (n) be "(3 + π)n ≥ 3n + nπ3n−1". We will prove P (n) is true for all n ∈ N, by induction.

2. Base case (n = 0): (3 + π)0 = 1 and 30 + 0 · π · 3−1 = 1, since 1 ≥ 1, P (0) is true.

3. Inductive Hypothesis: Suppose that P (k) is true for some arbitrary integer k ∈ N.

4. Inductive Step:

Goal: Show P (k+1), i.e. show (3+π)k+1 ≥ 3k+1+(k+1)π3(k+1)−1 = 3k+1+(k+1)π3k

(3 + π)k+1 = (3 + π)k · (3 + π) (Factor out (3 + π))
≥ (3k + k3k−1π) · (3 + π) (By I.H., (3 + π) ≥ 0)
= 3 · 3k + 3kπ + 3k3k−1π + k3k−1π2 (Distributive property)
= 3k+1 + 3kπ + k3kπ + k3k−1π2 (Simplify)
= 3k+1 + (k + 1)3kπ + k3k−1π2 (Factor out (k + 1))
≥ 3k+1 + (k + 1)π3k (k3k−1π2 ≥ 0)

5. So by induction, P (n) is true for all n ∈ N.

2

2. Inductively Odd
An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and
needs your help proving that it is correct.

1 public static boolean oddr(int n) {
2 if (n == 0)
3 return False;
4 else
5 return !oddr(n−1);
6 }

Help the student by writing an inductive proof to prove that for all integers n ≥ 0, the method oddr returns
True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions
Odd(n) := ∃x ∈ Z(n = 2x+ 1) and Even(n) := ∃x ∈ Z(n = 2x); !True = False and !False = True.

Solution:
Let P(n) be "oddr(n) returns True if n is odd, or False if n is even". We will show that P(n) is true for all
integers n ≥ 0 by induction on n.

Base Case: (n = 0)
0 is even, so P(0) is true if oddr(0) returns False, which is exactly the base case of oddr, so P(0) is true.
Inductive Hypothesis: Suppose P(k) is true for an arbitrary integer k ≥ 0.
Inductive Step:

• Case 1: k + 1 is even.
If k+1 is even, then there is an integer x s.t. k+1 = 2x, so then k = 2x−1 = 2(x−1)+1, so therefore
k is odd. We know that since k+1 > 0, oddr(k+1) should return !oddr(k). By the Inductive Hypothesis, we
know that since k is odd, oddr(k) returns True, so oddr(k+1) returns !oddr(k)= False, and k + 1 is even,
therefore P(k+1) is true.

• Case 2: k + 1 is odd.
If k + 1 is odd, then there is an integer x s.t. k + 1 = 2x + 1, so then k = 2x and therefore k is even.
We know that since k + 1 > 0, oddr(k+1) should return !oddr(k). By the Inductive Hypothesis, we know
that since k is even, oddr(k) returns False, so oddr(k+1) returns !oddr(k)= True, and k + 1 is odd, there-
fore P(k+1) is true.

Then P(k + 1) is true for all cases. Thus, we have shown P(n) is true for all integers n ≥ 0 by induction.

3

3. Strong Induction
Consider the function f(n) defined for integers n ≥ 1 as follows:
f(1) = 3
f(2) = 5
f(n) = 2f(n− 1)− f(n− 2)

Prove using strong induction that for all n ≥ 1, f(n) = 2n+ 1.

Solution:
Let P (n) be the claim that f(n) = 2n+ 1. We will prove P (n) for all n ≥ 1 by strong induction.
Base case:
f(1) = 3 = 2 ∗ 1 + 1
f(2) = 5 = 2 ∗ 2 + 1
So P (1) and P (2) are both true.
Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 2, P(2) ∧... ∧P(k) hold.
Inductive Step:

Goal: Prove P (k + 1) , in other words, f(k + 1) = 2(k + 1) + 1

f(k + 1) = 2f(k)− f(k − 1)

= 2(2(k) + 1)− (2(k − 1)− 1) by the IH
= 4k + 2− (2k − 1)

= 2k + 3

= 2(k + 1) + 1

Therefore, f(k + 1) = 2(k + 1) + 1, so P (k + 1) holds.
Conclusion: Therefore, P (n) holds for all numbers n ≥ 1 by strong induction.

4

4. Strong Induction: Collecting Candy
A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy".
For example, P (3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it
turns out that P(n) is true for any n ≥ 18. Use strong induction on n to prove this.

Hint: you’ll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.
Solution:
Let P(n) be defined as "You are able to buy n packs of candy". We will prove P (n) is true for all integers
n ≥ 18 by strong induction.

Base Cases: (n = 18, 19, 20, 21):

• n = 18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18 = 2 ∗ 7 + 1 ∗ 4).
• n = 19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19 = 1 ∗ 7 + 3 ∗ 4).
• n = 20: 20 packs of candy can be made up of 5 packs of 4 (20 = 5 ∗ 4).
• n = 21: 21 packs of candy can be made up of 3 packs of 7 (21 = 3 ∗ 7).

Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 21, P(18) ∧... ∧P(k) hold.

Inductive Step:

Goal: Show P (k + 1), i.e. show that we can buy k + 1 packs of candy.

We want to buy k+1 packs of candy. By the I.H., we can buy exactly k−3 packs, so we can add another
pack of 4 packs in order to buy k + 1 packs of candy, so P(k + 1) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k−3),
and add 4 to achieve P(k + 1). Therefore we needed to be able to assume that k − 3 ≥ 18. Adding 3 to
both sides, we needed to be able to assume that k ≥ 21. So, we have to prove the base cases up to 21,
that is: 18, 19, 20, 21.
Another way to think about this is that we had to use a fact from 4 steps back from k + 1 to k − 3 in
the IS, so we needed 4 base cases.

Conclusion: So by strong induction, P(n) is true for all integers n ≥ 18.

5

5. Structural Induction: Divisible by 4
Define a set B of numbers by:

• 4 and 12 are in B

• If x ∈ B and y ∈ B, then x+ y ∈ B and x− y ∈ B

Prove by induction that every number in B is divisible by 4.
Complete the proof below:

Solution:

Let P (b) be the claim that 4 | b. We will prove P (b) is true for all numbers b ∈ B by structural induction.
Base Case:

• 4 | 4 is trivially true, so P (4) holds.

• 12 = 3 · 4, so 4 | 12 and P (12) holds.

Inductive Hypothesis: Suppose P (x) and P (y) for some arbitrary x, y ∈ B.
Inductive Step:

Goal: Prove P (x+y) and P (x−y)

Per the IH, 4 | x and 4 | y. By the definition of divides, x = 4k and y = 4j for some integers k, j. Then,
x + y = 4k + 4j = 4(k + j). Since integers are closed under addition, k + j is an integer, so 4 | x + y and
P (x+ y) holds.
Similarly, x − y = 4k − 4j = 4(k − j) = 4(k + (−1 · j)). Since integers are closed under addition and
multiplication, and −1 is an integer, we see that k − j must be an integer. Therefore, by the definition of
divides, 4 | x− y and P (x− y) holds.
So, P (t) holds in both cases.
Conclusion: Therefore, P (b) holds for all numbers b ∈ B.

6

6. Structural Induction: CharTrees
Recursive Definition of CharTrees:

• Basis Step: Null is a CharTree

• Recursive Step: If L,R are CharTrees and c ∈ Σ, then CharTree(L, c,R) is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

• The preorder function returns the preorder traversal of all elements in a CharTree.

preorder(Null) = ε

preorder(CharTree(L, c,R)) = c · preorder(L) · preorder(R)

• The postorder function returns the postorder traversal of all elements in a CharTree.

postorder(Null) = ε

postorder(CharTree(L, c,R)) = postorder(L) · postorder(R) · c

• The mirror function produces the mirror image of a CharTree.

mirror(Null) = Null

mirror(CharTree(L, c,R)) = CharTree(mirror(R), c,mirror(L))

• Finally, for all strings x, let the “reversal” of x (in symbols xR) produce the string in reverse order.

Additional Facts:
You may use the following facts:

• For any strings x1, ..., xk: (x1 · ... · xk)R = xRk · ... · xR1

• For any character c, cR = c

Statement to Prove:
Show that for every CharTree T , the reversal of the preorder traversal of T is the same as the postorder
traversal of the mirror of T . In notation, you should prove that for every CharTree, T : [preorder(T)]R =
postorder(mirror(T)).

There is an example and space to work on the next page.

7

Example for Intuition:

a

b

c d

Let Ti be the tree above.
(Ti) =“abcd”.
Ti is built as (null, a, U)
Where U is (V, b,W),
V = (null, c, null),W = (null, d, null).

a

b

cd

This tree is (Ti).
((Ti)) =“dcba”,
“dcba” is the reversal of “abcd” so
[preorder(Ti)]

R = postorder(mirror(Ti)) holds for Ti

Solution:
Let P (T) be “[preorder(T)]R = postorder(mirror(T))”. We show P (T) holds for all CharTrees T by structural
induction.
Base case (T = Null): preorder(T)R = εR = ε = postorder(Null) = postorder(mirror(Null)), so P (Null)
holds.
Inductive hypothesis: Suppose P (L) ∧ P (R) for arbitrary CharTrees L,R.
Inductive step:
We want to show P (CharTree(L, c,R)),
i.e. [preorder(CharTree(L, c,R))]R = postorder(mirror(CharTree(L, c,R))).

Let c be an arbitrary element in Σ, and let T = CharTree(L, c,R)

(T)R = [c · (L) · (R)]R defn of preorder
= (R)R · (L)R · cR Fact 1
= (R)R · (L)R · c Fact 2
= ((R)) · ((L)) · c by I.H.
= (CharTree((R), c, (L)) recursive defn of postorder
= ((CharTree(L, c,R))) recursive defn of mirror
= ((T)) defn of T

So P (CharTree(L, c,R)) holds.
By the principle of induction, P (T) holds for all CharTrees T .

8

