
CSE 390z: Mathematics for Computation Workshop
Week 5 Workshop Solutions

0. Conceptual Review
(a) Definitions

a divides b: a | b ↔ ∃k ∈ Z (b = ka)
a is congruent to b modulo m: a ≡m b ↔ m | (a− b)

(b) How do you know if a multiplicative inverse does not exist?
A multiplicative inverse does not exist when gcd(a, b) 6= 1.

(c) Bezout’s theorem: If a and b are positive integers, then there exist integers s and t such that gcd(a, b) is
equal to what?

gcd(a, b) = sa+ tb

(d) What is Euclid’s algorithm? What does it help us calculate?
Euclid’s algorithm helps us find gcd(a, b).The algorithm is as follows:

• Repeatedly use gcd(a, b) = gcd(b, a%b)

• When you reach gcd(g, 0), return g.

1. Proofs by Contrapositive
For each part, write a proof by contrapositive of the statement.

(a) If a2 6≡ b2 (mod n), then a 6≡ b (mod n).

Solution:
We argue by contrapositive. Suppose a ≡ b (mod n). Then, by definition of equivalence mod n, n|(a− b)
and by definition of divides, there exists some integer k such that a− b = nk. Multiplying both sides of
the equation by a + b, we get (a − b)(a + b) = a2 − b2 = nk(a + b). Since integers are closed under
addition and multiplication, k(a+ b) must be an integer. Therefore, n|a2− b2 by definition of divides and
a2 ≡ b2 (mod n) by definition of equivalence mod n.

(b) For all integers a, b, if 3 - ab, then 3 - a and 3 - b.
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Solution:
Let a, b be an arbitrary integers. We argue by contrapositive. Suppose 3 | a or 3 | b. Thus, there are two
cases to consider:
Case 1:
Suppose 3 | a. Then, by definition of divides, there exists some integer k such that a = 3k. Multiplying
both sides by b, we get ab = 3kb. Since integers are closed under multiplication, kb is an integer. Then,
by definition of divides, 3 | ab.
Case 2:
Suppose 3 | b. Then, by definition of divides, there exists some integer j such that b = 3j. Multiplying
both sides by a, we get ab = 3ja. Since integers are closed under multiplication, ja is an integer. Then,
by definition of divides, 3 | ab.
In both cases, if 3 | a or 3 | b, then 3 | ab. Thus, the contrapositive is also true. Since a, b were arbitrary,
this proves that the statement is true for all integers a, b.

2. Proofs by Contradiction
For each part, write a proof by contradiction of the statement.

(a) If a is rational and ab is irrational, then b is irrational.

Solution:
Suppose for the sake of contradiction that this statement is false, meaning there exists an a, b where a is
rational and ab is irrational, and b is not irrational. Then, b is rational. By definition of rational, a = s

t
and b = x

y for some integers s, t, x, y where t 6= 0 and y 6= 0. Multiplying these together, we get ab = sx
ty .

Since integers are closed under multiplication, sx, ty are integers. And since the product of two non zero
integers cannot be zero, ty 6= 0. Thus, ab is rational. This is a contradiction since we stated that ab was
irrational. Therefore, the original statement must be true.

(b) For all integers n, 4 - n2 − 3.

Solution:
Suppose for the sake of contradiction there exists an integer n such that 4 | (n2 − 3). Then, by definition
of divides, there exists an integer k such that n2 − 3 = 4k. We will consider two cases:
Case 1: n is even
By definition of even, there is some integer a where n = 2a. Substituting n into the equation above, we
get (2a)2 − 3 = 4a2 − 3 = 4k. By algebra,

k =
4a2 − 3

4
= a2 − 3

4

Since integers are closed under multiplication, a2 must be an integer. Since 3
4 is not an integer, k must

not be an integer. This is a contradiction, since k was introduced as an integer.
Case 2: n is odd
By definition of odd, there is some integer b where n = 2b + 1, Substituting n into the equation above,
we get (2b+ 1)2 − 3 = 4b2 + 4b+ 1− 3 = 4k. By algebra,

k =
4b2 + 4b− 2

4
= b2 + b− 1

2

Since integers are closed under multiplication and addition, b2 + b must be an integer. Since 1
2 is not an

integer, k is not an integer. This is a contradiction, since k was introduced as an integer.
As shown, all cases led to a contradiction, so the original statement must be true.
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3. Don’t be Irrational!
Recall that the predicate Rational(x) is defined as ∃a∃b(Integer(a) ∧ Integer(b) ∧ b 6= 0 ∧ x = a

b ).
One of the following statements is true, and one is false:

• If xy and x are both rational, then y is also rational.

• If x− y and x are both rational, then y is also rational.

Decide which statement is true and which statement is false. Prove the true statement, and disprove the false
statement. For the disproof, it will be helpful to use proof by counterexample.

Solution:
Claim: If xy and x are both rational, then y is also rational.
We wish to disprove this through counterexample. Let x be 0, which is rational. x ∗ y will be 0 regardless of y,
so for an irrational y like y = π, x and xy are rational, while y is not.

Claim: If x− y and x are both rational, then y is also rational.

Proof. Suppose x and x − y are rational. By the definition of rational numbers, if x and x − y are rational,
then there are a, b, n,m ∈ Z with b,m 6= 0 such that x = a

b and x− y = n
m . Then:

x− y =
n

m
Given

y = x− n

m
Algebra

y =
a

b
− n

m
Substituting x =

a

b

Now we can rearrange this expression for y:

y =
a

b
− n

m

=
a

b
∗ m

m
− n

m
∗ b

b

=
am

bm
− nb

bm

=
am− bn

bm

Since integers are closed on multiplication and subtraction, am, bn, bm ∈ Z, and therefore am− bn ∈ Z. Since
b,m 6= 0, bm 6= 0 also, and therefore for p = am − bn and q = bm, y = p

q for p, q ∈ Z with q 6= 0. By the
definition of rational, y is rational.

4. More Number Theory Practice
For each of the following parts, prove or disprove the claim.

(a) If a | b and c | (−a), then (−c) | b.

Solution:
Suppose a | b and c | (−a). By definition of divides, b = ka and −a = cj for some integers k, j. By
algebra, a = −cj. Substituting a into the first equation, we get b = k(−cj) = (−kj)(−c). Then, by
definition of divides, (−c) | b and the claim holds.

(b) For all a, b, n, x ∈ Z, a ≡n b implies xa ≡n xb.
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Solution:
We can disprove this through counterexample. Let a = 2, b = 5, n = 3, x = 2. Since 2 ≡3 5, a ≡n b. But
22 6≡3 25 because 22 (mod 3) = 4 (mod 3) = 1 and 25 (mod 3) = 32 (mod 3) = 2, and 1 6= 2. Therefore,
the implication is false.

(c) For all integers n, if n is not divisible by 3, then n2 ≡ 1 (mod 3).

Solution:
Let n be an arbitrary integer and suppose that n is not divisible by 3. Then, there are two cases:
Case 1: n ≡ 1 (mod 3)
By definition of congruence and divides, 3 | (n−1) so n−1 = 3k for some integer k. Rearranging, we get
n = 3k + 1. So, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1. Then, n2 − 1 = 3(3k2 + 2k). Since
3k2 + 2k is an integer, 3 | (n2 − 1) by definition of divides. By definition of congruence, n2 ≡ 1 (mod 3)
Case 2: n ≡ 2 (mod 3)
By definition of congruence and divides, 3|(n− 2) so n− 2 = 3j for some integer j. Rearranging, we get
n = 3j + 2. So, n2 = 9j2 + 12j + 4 = 3(3j2 + 4j + 1) + 1. Then, n2 − 1 = 3(3j2 + 4j + 1). Since
3j2+4j+1 is an integer, 3 | (n2−1) by definition of divides. By definition of congruence, n2 ≡ 1 (mod 3).
So, in all cases, n2 ≡ 1 (mod 3). Since n was arbitrary, the claim holds for all integers n.

5. Modular Arithmetic
Prove that for any odd integer a there is an integer b that satisfies ab ≡ 2 (mod 8).
Solution:
Let a be an arbitrary odd integer. Since a is not even, a does not divide 8. Since 8 is only divisible by 1, 2, 4,
and 8, we have gcd(a, 8) = 1. By Bezout’s Theorem, we know gcd(a, 8) = 1 = ax+ 8y for some integers x, y.
By algebra, 8y = 1−ax. Multiplying both sides by 2, we get 8(2y) = 2−a(2x). Since integers are closed under
multiplication, 2y and 2x are integers. By definition of divides, 8|(2− a(2x)) and by definition of equivalence,
a(2x) ≡ 2 (mod 8). So, there is an integer b = 2x that satisfies ab ≡ 2 (mod 8). Since a was an arbitrary odd
integer, there is an integer b that satisfies ab ≡ 2 (mod 8) for any odd integer a.
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6. Extended Euclidean Algorithm
Find all solutions in the range of 0 ≤ x < 2021 to the modular equation:

311x ≡ 3 (mod 2021)

Solution:

gcd(2021, 311) = gcd(311, 2021 mod 311) = gcd(311, 155)
= gcd(155, 311 mod 155) = gcd(155, 1)
= 1

Then we know that there is a multiplicative inverse:

2021 = 311 ∗ 6 + 155

311 = 155 ∗ 2 + 1

155 = 1 ∗ 155

From here, we can rearrange the equations to get:

155 = 2021− 311 ∗ 6
1 = 311− 155 ∗ 2

From here, we use back substitution and plug these back into our equations:

1 = 311− 155 ∗ 2
1 = 311− 2 ∗ (2021− 311 ∗ 6)
1 = 311− 2 ∗ 2021 + 12 ∗ 311
1 = 13 ∗ 311− 2 ∗ 2021

So the multiplicative inverse is 13, i.e. 311 ∗ 13 ≡2021 1, so 311 ∗ 13 ∗ 3 ≡2021 3. Then x = 13 ∗ 3 + 2021k =
39 + 2021k for k ∈ N, but since we’re only asked for solutions in the range of 0 ≤ x < 2021, x = 39.
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7. Proof by...how many cases?
Prove that for all integers n, 2n2 + n+ 1 is not divisible by 3.

Hint: You will probably want to use proof by cases for this problem. To decide which cases to use, consider
the possible outcomes when dividing n by 3.
Solution:
Let n be an arbitrary integer. When n is divided by 3, there are three possible remainders. These form the
following cases.
Case 1: When n is divided by 3, the remainder is 0.
Then, n = 3q + 0 for some integer q.

2n2 + n+ 1 = 2(3q)2 + (3q) + 1

= 2(9q2) + 3q + 1

= 18q2 + 3q + 1

= 3(6q2 + q) + 1

Since q is an integer, 6q2 + q is also an integer. This means when 2n2 + n+1 is divided by 3, the remainder is
1, so it is not divisible by 3.
Case 2: When n is divided by 3, the remainder is 1.
Then, n = 3q + 1 for some integer q.

2n2 + n+ 1 = 2(3q + 1)2 + (3q + 1) + 1

= 2(9q2 + 6q + 1) + (3q + 1) + 1

= 18q2 + 12q + 2 + 3q + 1 + 1

= 18q2 + 15q + 4

= 3(6q2 + 5q + 1) + 1

Since q is an integer, 6q2+5q+1 is also an integer. This means when 2n2+n+1 is divided by 3, the remainder
is 1, so it is not divisible by 3.
Case 3: When n is divided by 3, the remainder is 2. Then, n = 3q + 2 for some integer q.

2n2 + n+ 1 = 2(3q + 2)2 + (3q + 2) + 1

= 2(9q2 + 12q + 4) + (3q + 2) + 1

= 18q2 + 24q + 8 + 3q + 2 + 1

= 18q2 + 27q + 11

= 3(6q2 + 9q + 3) + 2

Since q is an integer, 6q2+9q+3 is also an integer. This means when 2n2+n+1 is divided by 3, the remainder
is 2, so it is not divisible by 3.
So, in all cases, 2n2 + n+ 1 is not divisible by 3. Since n was arbitrary, this proves the claim for all integers.
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