Relations definitions: Let \(R \) be a relation on \(A \). In other words, \(R \subseteq A \times A \). Then:

- \(R \) is reflexive iff for all \(a \in A \), \((a, a) \in R \).
- \(R \) is symmetric iff for all \(a, b \), if \((a, b) \in R \), then \((b, a) \in R \).
- \(R \) is antisymmetric iff for all \(a, b \), if \((a, b) \in R \) and \(a \neq b \), then \((b, a) \notin R \).
- \(R \) is transitive iff for all \(a, b \), if \((a, b) \in R \) and \((b, c) \in R \), then \((a, c) \in R \).

Let \(R, S \) be relations on \(A \). Then:

- \(R \circ S = \{(a, c) : \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\} \)

1. Relations Examples
 (a) Suppose that \(R, S \) are relations on the integers, where \(R = \{(1, 2), (4, 3), (5, 5)\} \) and \(S = \{(2, 5), (2, 7), (3, 3)\} \). What is \(R \circ S \)? What is \(S \circ R \)?

 (b) Consider the relation \(R \subseteq \mathbb{Z} \times \mathbb{Z} \) defined by \((a, b) \in R \) iff \(a \leq b + 1 \). List 3 pairs of integers that are in \(R \), and 3 pairs of integers that are not.

 (c) Consider the relation \(R \subseteq \mathbb{Z} \times \mathbb{Z} \) defined by \((a, b) \in R \) iff \(a \leq b + 1 \). Determine if \(R \) is reflexive, symmetric, antisymmetric, and/or transitive. If a relation has a property, explain why. If not, state a counterexample.
2. Relations Proofs
Suppose that $R, S \subseteq \mathbb{Z} \times \mathbb{Z}$ are relations.

(a) Prove or disprove: If R and S are transitive, $R \cup S$ is transitive.

(b) Prove or disprove: If R and S are reflexive, then $R \circ S$ is reflexive.

(c) Prove or disprove: If $R \circ S$ is reflexive, then R and S are reflexive.

(d) Prove or disprove: If R is symmetric, \overline{R} (the complement of R) is symmetric.
3. Constructing DFAs
For each of the following, construct a DFA for the specified language.
(a) Strings of a's and b's with odd length ($\Sigma = \{a, b\}$).

(b) Strings with an even number of a's ($\Sigma = \{a, b\}$).

(c) Strings with an odd number of b's ($\Sigma = \{a, b\}$).

(d) Strings with an even number of a's or an odd number of b's ($\Sigma = \{a, b\}$).
4. Structural Induction: Dictionaries

Recursive definition of a Dictionary (i.e. a Map):

- Basis Case: [] is the empty dictionary
- Recursive Case: If D is a dictionary, and \(a \) and \(b \) are elements of the universe, then \((a \rightarrow b) :: D\) is a dictionary that maps \(a \) to \(b \) (in addition to the content of \(D \)).

Recursive functions on Dictionaries:

\[
\text{AllKeys}([]) = [] \\
\text{AllKeys}((a \rightarrow b) :: D) = a :: \text{AllKeys}(D) \\
\text{len}([]) = 0 \\
\text{len}((a \rightarrow b) :: D) = 1 + \text{len}(D)
\]

Recursive functions on Sets:

\[
\text{len}([]) = 0 \\
\text{len}(a :: C) = 1 + \text{len}(C)
\]

Statement to prove:
Prove that \(\text{len}(D) = \text{len}(\text{AllKeys}(D)) \).
5. Structural Induction on Palindromes

Consider the following recursive definition of the set B of palindrome binary strings:

- **Base case:** $\varepsilon \in B$, $0 \in B$, $1 \in B$.

- **Recursive steps:**
 - If $s \in B$, then $0s0 \in E$, $1s1 \in B$, and $ss \in B$.

Now define the functions $\text{numOnes}(x)$ and $\text{numZeros}(x)$ to be the number of 1s and 0s respectively in the string x.

Use structural induction to prove that for any string $s \in B$, $\text{numOnes}(s) \cdot \text{numZeros}(s)$ is even.