CSE 390Z: Mathematics of Computing

Week 9 Workshop

Conceptual Review

Relations definitions: Let R be a relation on A. In other words, $R \subseteq A \times A$. Then:

- R is reflexive iff for all $a \in A$, $(a, a) \in R$.
- R is symmetric iff for all a, b, if $(a, b) \in R$, then $(b, a) \in R$.
- R is antisymmetric iff for all a, b, if $(a, b) \in R$ and $a \neq b$, then $(b, a) \notin R$.
- R is transitive iff for all a, b, if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$.

Let R, S be relations on A. Then:

• $R \circ S = \{(a,c) : \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S\}$

1. Relations Examples

(a) Suppose that R, S are relations on the integers, where $R = \{(1, 2), (4, 3), (5, 5)\}$ and $S = \{(2, 5), (2, 7), (3, 3)\}$. What is $R \circ S$? What is $S \circ R$?

(b) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b + 1$. List 3 pairs of integers that are in R, and 3 pairs of integers that are not.

(c) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b+1$. Determine if R is reflexive, symmetric, antisymmetric, and/or transitive. If a relation has a property, explain why. If not, state a counterexample.

2. Relations Proofs

Suppose that $R, S \subseteq \mathbb{Z} \times \mathbb{Z}$ are relations.

(a) Prove or disprove: If R and S are transitive, $R\cup S$ is transitive.

(b) Prove or disprove: If R and S are reflexive, then $R \circ S$ is reflexive.

(c) Prove or disprove: If $R \circ S$ is reflexive, then R and S are reflexive.

(d) Prove or disprove: If R is symmetric, \overline{R} (the complement of R) is symmetric.

3. Constructing DFAs

For each of the following, construct a DFA for the specified language.

(a) Strings of a's and b's with odd length ($\Sigma = \{a, b\}$).

(b) Strings with an even number of a's ($\Sigma = \{a, b\}$).

(c) Strings with an odd number of b's ($\Sigma = \{a, b\}$).

(d) Strings with an even number of a's or an odd number of b's ($\Sigma = \{a, b\}$).

4. Structural Induction: Dictionaries

Recursive definition of a Dictionary (i.e. a Map):

- Basis Case: [] is the empty dictionary
- Recursive Case: If D is a dictionary, and a and b are elements of the universe, then (a → b) :: D is a dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

$$\begin{aligned} \mathsf{AllKeys}([]) &= []\\ \mathsf{AllKeys}((a \to b) :: \mathsf{D}) &= a :: \mathsf{AllKeys}(\mathsf{D})\\ &= a\\ \mathsf{len}([]) &= 0\\ &\mathsf{len}((a \to b) :: \mathsf{D}) &= 1 + \mathsf{len}(\mathsf{D}) \end{aligned}$$

Recursive functions on Sets:

$$len([]) = 0$$

$$len(a :: C) = 1 + len(C)$$

Statement to prove:

Prove that len(D) = len(AllKeys(D)).

5. Structural Induction on Palindromes

Consider the following *recursive* defintion of the set B of palindrome binary strings:

- Base case: $\varepsilon \in B$, $0 \in B$, $1 \in B$.
- Recursive steps:

- If $s \in B$, then $0s0 \in E$, $1s1 \in B$, and $ss \in B$.

Now define the functions numOnes(x) and numZeros(x) to be the number of 1s and 0s respectively in the string x.

Use structural induction to prove that for any string $s \in B$, numOnes $(s) \cdot numZeros(s)$ is even.