CSE 390Z: Mathematics for Computation Workshop

Week 7 Workshop

0. Finish the Induction Proof

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=1$ for $n=1$
$f(2)=4$ for $n=2$
$f(3)=9$ for $n=3$
$f(n)=f(n-1)-f(n-2)+f(n-3)+2(2 n-3)$ for $n \geq 4$
Prove by strong induction that for all $n \geq 1, f(n)=n^{2}$.

Complete the induction proof below.

Let $\mathrm{P}(n)$ be defined as \qquad . We will prove $P(n)$ is true for all integers $n \geq$ \qquad by strong induction.

Base Cases:

Inductive Hypothesis: Suppose $\mathbf{P}(j)$ for all \qquad $\leq j \leq k$ for some arbitrary integer $k \geq$ \qquad .

Inductive Step:
Goal: Show $P(k+1)$, i.e. show that \qquad .

$$
f(k+1)=
$$

So $\mathrm{P}(k+1)$ holds.
Conclusion: So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq$ \qquad .

1. Prove the inequality

Prove by induction on n that for all $n \in \mathbb{N}$ the inequality $(3+\pi)^{n} \geq 3^{n}+n \pi 3^{n-1}$ is true.

2. Inductively Odd

An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and needs your help proving that it is correct.

```
public static boolean oddr(int n) {
    if (n == 0)
        return False;
    else
        return !oddr(n-1);
}
```

Help the student by writing an inductive proof to prove that for all integers $n \geq 0$, the method oddr returns True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions $\operatorname{Odd}(n):=\exists x \in \mathbb{Z}(n=2 x+1)$ and $\operatorname{Even}(n):=\exists x \in \mathbb{Z}(n=2 x)$; $!$ True $=$ False and $!$ False $=$ True.

3. Strong Induction

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=3$
$f(2)=5$
$f(n)=2 f(n-1)-f(n-2)$
Prove using strong induction that for all $n \geq 1, f(n)=2 n+1$.

4. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7 . Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". For example, $P(3)$ is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that $\mathrm{P}(n)$ is true for any $n \geq 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

5. Structural Induction: Divisible by 4

Define a set \mathfrak{B} of numbers by:

- 4 and 12 are in \mathfrak{B}
- If $x \in \mathfrak{B}$ and $y \in \mathfrak{B}$, then $x+y \in \mathfrak{B}$ and $x-y \in \mathfrak{B}$

Prove by induction that every number in \mathfrak{B} is divisible by 4 .
Complete the proof below:

6. Structural Induction: CharTrees
 Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are CharTrees and $c \in \Sigma$, then $\operatorname{CharTree}(L, c, R)$ is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

- The preorder function returns the preorder traversal of all elements in a CharTree.

$$
\begin{array}{ll}
\operatorname{preorder}(\operatorname{Null}) & =\varepsilon \\
\operatorname{preorder}(\operatorname{CharTree}(L, c, R)) & =c \cdot \operatorname{preorder}(L) \cdot \operatorname{preorder}(R)
\end{array}
$$

- The postorder function returns the postorder traversal of all elements in a CharTree.

```
postorder(Null) = =
postorder(CharTree (L,c,R)) = postorder (L) \cdot postorder (R) }\cdot
```

- The mirror function produces the mirror image of a CharTree.

$$
\begin{array}{ll}
\operatorname{mirror}(\operatorname{Null}) & =\operatorname{Null} \\
\operatorname{mirror}(\operatorname{CharTree}(L, c, R)) & =\operatorname{CharTree}(\operatorname{mirror}(R), c, \operatorname{mirror}(L))
\end{array}
$$

- Finally, for all strings x, let the "reversal" of x (in symbols x^{R}) produce the string in reverse order.

Additional Facts:

You may use the following facts:

- For any strings $x_{1}, \ldots, x_{k}:\left(x_{1} \cdot \ldots \cdot x_{k}\right)^{R}=x_{k}^{R} \cdot \ldots \cdot x_{1}^{R}$
- For any character $c, c^{R}=c$

Statement to Prove:

Show that for every CharTree T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every CharTree, T : $[\operatorname{preorder}(T)]^{R}=$ postorder(mirror $(T))$.

There is an example and space to work on the next page.

Example for Intuition:

Let T_{i} be the tree above.
(T_{i}) ="abcd".
T_{i} is built as (null, a, U)
Where U is (V, b, W),
$V=($ null,c, null $), W=(n u l l, d$, null $)$.

This tree is $\left(T_{i}\right)$.
$\left(\left(T_{i}\right)\right)=$ "dcba",
"dcba" is the reversal of "abcd" so
$\left[\operatorname{preorder}\left(T_{i}\right)\right]^{R}=\operatorname{postorder}\left(\operatorname{mirror}\left(T_{i}\right)\right)$ holds for T_{i}

