CSE 390Z: Mathematics for Computation Workshop

Practice 311 Midterm Solutions

Name: \qquad

UW ID: \qquad

Instructions:

- This is a simulated practice midterm. You will not be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam, totaling 85 points.

1. Predicate Translation [20 points]

Let the domain of discourse be numbers and mathematicians (math teachers and math students). Let the following predicates be defined:
$\operatorname{Number}(x):=x$ is a number
Prime $(x):=x$ is a prime number
MathTeacher $(x):=x$ is a math teacher
MathStudent $(x):=x$ is a math student
Likes $(x, y):=x$ likes y
For parts (a) and (b), translate the predicate logic statement into natural English.
(a) (5 points) $\forall x \forall y((\operatorname{Prime}(x) \wedge \operatorname{Likes}(y, x)) \rightarrow \operatorname{MathStudent}(y))$

Solution:

Only math students like prime numbers.
(b) (5 points) $\exists x(\operatorname{Prime}(x) \wedge \forall y((\operatorname{Math} \operatorname{Teacher}(y) \vee \operatorname{MathStudent}(y)) \rightarrow \operatorname{Likes}(y, x)))$

Solution:

There is a prime number that all mathematicians like.
For parts (c) and (d), translate the English sentence into predicate logic.
(c) (5 points) There are at least two (different) prime numbers

Solution:

$\exists x \exists y$ (Prime $(x) \wedge \operatorname{Prime}(y) \wedge x \neq y)$
(d) (5 points) Math teachers and math students don't like the same numbers.

Solution:

```
\(\forall x \forall y \forall z((\operatorname{MathTeacher}(x) \wedge \operatorname{MathStudent}(y) \wedge \operatorname{Number}(z)) \rightarrow \neg(\operatorname{Likes}(x, z) \wedge \operatorname{Likes}(y, z))))\)
OR
\(\neg \exists x \exists y \exists z(\operatorname{Number}(x) \wedge \operatorname{Math} \operatorname{Teacher}(y) \wedge \operatorname{MathStudent}(z) \wedge \operatorname{Likes}(y, x) \wedge \operatorname{Likes}(z, x))\)
```


2. Boolean Algebra [15 points]

Let f be the boolean function defined as $f(x, y, z)=(x+y)^{\prime}+(z y)$
(a) (5 points) Fill in the following table with the values of $f(x, y, z)$ in the last column. Feel free to use the blank columns while doing your work.

x	y	z				$f(x, y, z)$
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Solution:

x	y	z	$(x+y)$	$(x+y)^{\prime}$	$(z y)$	$f(x, y, z)$
0	0	0	0	1	0	1
0	0	1	0	1	0	1
0	1	0	1	0	0	0
0	1	1	1	0	1	1
1	0	0	1	0	0	0
1	0	1	1	0	0	0
1	1	0	1	0	0	0
1	1	1	1	0	1	1

(b) (5 points) Write $f(x, y, z)$ as a Boolean algebra expression in the canonical sum-of-products form in terms of the three input bits x, y, and z.

Solution:

$f(x, y, z)=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y z+x y z$
(c) (5 points) Write $f(x, y, z)$ as a Boolean algebra expression in the canonical product-of-sums form in terms of the three input bits x, y, and z.

Solution:

$f(x, y, z)=\left(x+y^{\prime}+z\right)\left(x^{\prime}+y+z\right)\left(x^{\prime}+y+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z\right)$

3. Number Theory Proof [10 points]

Prove the following statement using a formal proof:

$$
\text { For all integers } a, b, c \text {, if } a^{2} \mid b \text { and } b^{3} \mid c \text {, then } a^{6} \mid c \text {. }
$$

Solution:

1. Let x, y, z be arbitrary integers.
$2.1 x^{2}\left|y \wedge y^{3}\right| z$
Assumption
$2.2 x^{2} \mid y$ $\operatorname{Elim} \wedge: 2.1$
$2.3 y^{3} \mid z$
$2.4 \exists k\left(y=x^{2} k\right)$
Elim $\wedge: 2.2$
$2.5 \exists k\left(z=y^{3} k\right)$
$2.6 y=x^{2} s$
$2.7 z=y^{3} t$
$2.8 z=\left(x^{2} s\right)^{3} t=x^{6}\left(s^{3} t\right)$
$2.9 \exists k\left(z=x^{6} k\right)$
$2.10 x^{6} \mid z$
Definition of divides: 2.9
2. $x^{2}\left|y \wedge y^{3}\right| z \rightarrow x^{6} \mid z$
Direct Proof: 2.1-2.10
3. $\forall a \forall b \forall c\left(\left(a^{2}\left|b \wedge b^{3}\right| c\right) \rightarrow a^{6} \mid c\right.$

4. Induction [20 points]

Prove the following using induction:

$$
\text { For all integers } n \geq 0, \sum_{j=1}^{n}(2 j-1)=n^{2}
$$

Hint: When the lower bound of a summation is greater than the upper bound, the summation is 0 .
For example, $\sum_{i=0}^{-1}=0$.

Solution:

1. Let $P(n)$ be $\sum_{j=1}^{n}(2 j-1)=n^{2}$. We will prove $P(n)$ true for all integers $n \geq 0$ by induction.
2. Base Case $(n=0)$:
$\sum_{j=1}^{0}(2 j-1)=0=0^{2}$. So, $P(0)$ holds.
3. Inductive Hypothesis: Assume that $P(k)$ holds for some arbitrary integer $k \geq 0$; i.e, $\sum_{j=1}^{k}(2 j-1)=k^{2}$.
4. Inductive Step:

$$
\text { Goal: Show } P(k+1) \text {, i.e. show } \sum_{j=1}^{k+1}(2 j-1)=(k+1)^{2}
$$

$$
\begin{aligned}
\sum_{j=1}^{k+1}(2 j-1) & =\left(\sum_{j=1}^{k}(2 j-1)\right)+(2(k+1)-1) \\
& =k^{2}+(2(k+1)-1) \quad \text { Inductive Hypothesis } \\
& =k^{2}+2 k+1 \\
& =(k+1)^{2}
\end{aligned}
$$

Thus, $P(k+1)$ holds.
5. Therefore, by the principle of induction, the claim $P(n)$ holds for all integers $n \geq 0$.

5. Sets [20 points]

One of the following claims is true while the other is false. For the true claim, prove it with an English proof. For the false claim, disprove it with a counterexample (you can write elements for sets A, B, C and show that it disproves the claim).
For both parts, suppose A, B, and C are sets.
(a) (10 points) If $A \subseteq B$, then $A \backslash C \subseteq B \backslash C$.

Solution:

This claim is true. The proof is as follows:
Suppose $A \subseteq B$. Let x be an arbitrary element in $A \backslash C$. By definition of set difference, $x \in A$ and $x \notin C$. By definition of subset, $x \in B$. Because $x \in B$ and $x \notin C, x \in B \backslash C$ by definition of set difference. Since x was arbitrary, we have shown by definition of subset that $A \backslash C \subseteq B \backslash C$. Thus, the claim holds.
(b) (10 points) If $B \subseteq C$, then $A \backslash B \subseteq A \backslash C$.

Solution:

This claim is false. Let
$A=\{1,2,3\}$
$B=\{1\}$
$C=\{1,2\}$
Then, we can see that $B \subseteq C . A \backslash B=\{2,3\}$ and $A \backslash C=\{3\}$. Since the element 2 is in $A \backslash B$ but not in $A \backslash C, A \backslash B \nsubseteq A \backslash C$ and the claim is false.

