CSE 390Z: Mathematics for Computation Workshop

Practice 311 Midterm Solutions

Name:			
UW ID:			

Instructions:

- This is a **simulated practice midterm**. You will **not** be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam, totaling 85 points.

1. Predicate Translation [20 points]

Let the domain of discourse be numbers and mathematicians (math teachers and math students). Let the following predicates be defined:

 $\begin{aligned} & \mathsf{Number}(x) := x \text{ is a number} \\ & \mathsf{Prime}(x) := x \text{ is a prime number} \\ & \mathsf{MathTeacher}(x) := x \text{ is a math teacher} \\ & \mathsf{MathStudent}(x) := x \text{ is a math student} \\ & \mathsf{Likes}(x,\,y) := x \text{ likes } y \end{aligned}$

For parts (a) and (b), translate the predicate logic statement into natural English.

(a) (5 points) $\forall x \forall y ((\mathsf{Prime}(x) \land \mathsf{Likes}(y, x)) \rightarrow \mathsf{MathStudent}(y))$

Solution:

Only math students like prime numbers.

(b) (5 points) $\exists x (\mathsf{Prime}(x) \land \forall y ((\mathsf{MathTeacher}(y) \lor \mathsf{MathStudent}(y)) \to \mathsf{Likes}(y, x)))$

Solution:

There is a prime number that all mathematicians like.

For parts (c) and (d), translate the English sentence into predicate logic.

(c) (5 points) There are at least two (different) prime numbers

Solution:

```
\exists x \exists y (\mathsf{Prime}(x) \land \mathsf{Prime}(y) \land x \neq y)
```

(d) (5 points) Math teachers and math students don't like the same numbers.

Solution:

```
 \forall x \forall y \forall z ((\mathsf{MathTeacher}(x) \land \mathsf{MathStudent}(y) \land \mathsf{Number}(z)) \rightarrow \neg(\mathsf{Likes}(x,z) \land \mathsf{Likes}(y,z)))) \\ \mathsf{OR} \\ \neg \exists x \exists y \exists z (\mathsf{Number}(x) \land \mathsf{MathTeacher}(y) \land \mathsf{MathStudent}(z) \land \mathsf{Likes}(y,x) \land \mathsf{Likes}(z,x)) \\
```

2. Boolean Algebra [15 points]

Let f be the boolean function defined as $f(x,y,z)=(x+y)^\prime+(zy)$

(a) (5 points) Fill in the following table with the values of f(x,y,z) in the last column. Feel free to use the blank columns while doing your work.

x	y	z		f(x,y,z)
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Solution:

x	y	z	(x+y)	(x+y)'	(zy)	f(x,y,z)
0	0	0	0	1	0	1
0	0	1	0	1	0	1
0	1	0	1	0	0	0
0	1	1	1	0	1	1
1	0	0	1	0	0	0
1	0	1	1	0	0	0
1	1	0	1	0	0	0
1	1	1	1	0	1	1

(b) (5 points) Write f(x, y, z) as a Boolean algebra expression in the canonical sum-of-products form in terms of the three input bits x, y, and z.

Solution:

$$f(x,y,z) = x'y'z' + x'y'z + x'yz + xyz$$

(c) (5 points) Write f(x, y, z) as a Boolean algebra expression in the canonical product-of-sums form in terms of the three input bits x, y, and z.

Solution:

$$f(x,y,z) = (x+y'+z)(x'+y+z)(x'+y+z')(x'+y'+z)$$

3. Number Theory Proof [10 points]

Prove the following statement using a formal proof:

For all integers a,b,c, if $a^2\mid b$ and $b^3\mid c$, then $a^6\mid c$.

Solution:

1. Let x, y, z be arbitrary integers.

3. $\forall a \forall b \forall c ((a^2 \mid b \land b^3 \mid c) \rightarrow a^6 \mid c)$

$2.1 x^2 \mid y \wedge y^3 \mid z$	Assumption
2.2 $x^2 y$	Elim ∧: 2.1
2.3 $y^3 z$	Elim ∧: 2.2
$2.4 \ \exists k(y=x^2k)$	Definition of divides: 2.2
$2.5 \ \exists k(z=y^3k)$	Definition of divides: 2.3
2.6 $y = x^2 s$	Elim ∃: 2.4
$2.7 \ z = y^3 t$	Elim ∃: 2.5
2.8 $z = (x^2 s)^3 t = x^6 (s^3 t)$	Algebra
$2.9 \ \exists k(z=x^6k)$	Intro ∃: 2.8
2.10 $x^6 \mid z$	Definition of divides: 2.9
$2. \ x^2 \mid y \wedge y^3 \mid z \to x^6 \mid z$	Direct Proof: 2.1 - 2.10

Intro \forall

4. Induction [20 points]

Prove the following using induction:

For all integers
$$n \ge 0$$
, $\sum_{j=1}^{n} (2j-1) = n^2$

Hint: When the lower bound of a summation is greater than the upper bound, the summation is 0. For example, $\sum_{i=0}^{-1} = 0$.

Solution:

- 1. Let P(n) be $\sum_{j=1}^{n} (2j-1) = n^2$. We will prove P(n) true for all integers $n \geq 0$ by induction.
- 2. Base Case (n=0): $\sum_{j=1}^{0}(2j-1)=0=0^2.$ So, P(0) holds.
- 3. Inductive Hypothesis: Assume that P(k) holds for some arbitrary integer $k \geq 0$; i.e, $\sum_{j=1}^k (2j-1) = k^2$.
- 4. Inductive Step:

Goal: Show
$$P(k+1)$$
, i.e. show $\sum\limits_{j=1}^{k+1}(2j-1)=(k+1)^2$

$$\begin{split} \sum_{j=1}^{k+1} (2j-1) &= (\sum_{j=1}^k (2j-1)) + (2(k+1)-1) \\ &= k^2 + (2(k+1)-1) \\ &= k^2 + 2k + 1 \\ &= (k+1)^2 \end{split}$$
 Inductive Hypothesis

6

Thus, P(k+1) holds.

5. Therefore, by the principle of induction, the claim P(n) holds for all integers $n \geq 0$.

5. Sets [20 points]

One of the following claims is true while the other is false. For the true claim, prove it with an English proof. For the false claim, disprove it with a counterexample (you can write elements for sets A, B, C and show that it disproves the claim).

For both parts, suppose A, B, and C are sets.

(a) (10 points) If $A \subseteq B$, then $A \setminus C \subseteq B \setminus C$.

Solution:

This claim is true. The proof is as follows:

Suppose $A\subseteq B$. Let x be an arbitrary element in $A\setminus C$. By definition of set difference, $x\in A$ and $x\notin C$. By definition of subset, $x\in B$. Because $x\in B$ and $x\notin C$, $x\in B\setminus C$ by definition of set difference. Since x was arbitrary, we have shown by definition of subset that $A\setminus C\subseteq B\setminus C$. Thus, the claim holds.

(b) (10 points) If $B \subseteq C$, then $A \setminus B \subseteq A \setminus C$.

Solution:

This claim is false. Let

$$A = \{1, 2, 3\}$$

$$B = \{1\}$$

$$C = \{1, 2\}$$

Then, we can see that $B \subseteq C$. $A \setminus B = \{2,3\}$ and $A \setminus C = \{3\}$. Since the element 2 is in $A \setminus B$ but not in $A \setminus C$, $A \setminus B \not\subseteq A \setminus C$ and the claim is false.