CSE 390Z: Mathematics for Computation Workshop

Practice 311 Final Solutions

Name: \qquad

UW ID: \qquad

Instructions:

- This is a simulated practice final. You will not be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 7 problems on this exam, totaling 120 points.

1. Language Representation (18 points)

Let the language L consist of all binary strings that do not contain 111 .
(a) [5 points] Write a regular expression that represents L.

Solution:

$(0 \cup 10 \cup 110)^{*}(1 \cup 11 \cup \epsilon)$
(b) [5 points] Write a CFG that generates all strings in L.

Solution:
$\mathbf{S} \rightarrow \mathbf{X Y}$
$\mathbf{X} \rightarrow 0 \mathbf{X}|10 \mathbf{X}| 110 \mathbf{X} \mid \epsilon$
$\mathbf{Y} \rightarrow 1|11| \epsilon$
(c) [5 points] Draw a DFA that accepts exactly the strings in L.

Solution:

(d) [3 points] Convert the following regular expression to a CFG:

$$
10\left(0^{*} \cup 1^{*}\right) 01
$$

Solution:

$\mathbf{S} \rightarrow 10 \mathbf{X} 01 \mid 10 \mathbf{Y} 01$
$\mathbf{X} \rightarrow 0 \mathbf{X} \mid \epsilon$
$\mathbf{Y} \rightarrow 1 \mathbf{Y} \mid \epsilon$

2. FSMs (20 points)

(a) [10 points] The following DFA accepts all binary strings that do not end in 0 .

The following DFA accepts all binary strings that contain at least two 1 s .

Draw a DFA that accepts all binary strings that do not end in 0 AND contain at least two 1 s .

Solution:

(b) [10 points] Convert the following NFA into a DFA.

Solution:

3. Relations (17 points)

(a) [7 points] Let the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ be defined as $\{(x, y): 4 \mid(x+y)\}$. List 3 elements of R.
-
-
-

Solution:

- $(0,0)$
- $(4,0)$
- $(2,2)$

List the properties that R has out of the following: reflexive, transitive, symmetric, antisymmetric. If R has a property, simply say so without further explanation. If R does not have a property, provide a counterexample without explaining further.

Solution:

Reflexive: No. $(1,1)$ is not in R.
Transitive: No. $(3,1)$ and $(1,3)$ are in R, but $(3,3)$ is not.
Symmetric: Yes.
Antisymmetric: No. $(3,1)$ and $(1,3)$ are both in R.
(b) [10 points] Let R and S be symmetric relations on a set A. Prove that $R \backslash S$ is symmetric using an English proof.

Solution:

Let a, b be arbitrary and suppose $(a, b) \in R \backslash S$. By definition of set difference, $(a, b) \in R$ and $(a, b) \notin S$. Since R is symmetric, $(b, a) \in R$. By taking the contrapositive of the definition of symmetric, we see that if an element $(x, y) \notin S$, then $(y, x) \notin S$ for any x, y. So, $(b, a) \notin S$. By definition of set difference, $(b, a) \in R \backslash S$. Since a, b were arbitrary, we have shown that $R \backslash S$ is symmetric.

4. Induction I (15 points)

Let the function $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as follows:
$f(0)=2$
$f(1)=7$
$f(n)=f(n-1)+2 f(n-2)$ for $n \geq 2$
Prove that $f(n)=3 * 2^{n}+(-1)^{n+1}$ for all integers $n \geq 0$ using strong induction.

Solution:

Let $P(n)$ be " $f(n)=3 * 2^{n}+(-1)^{n+1}$. We will prove $P(n)$ holds for all $n \geq 0$ by strong induction.

Base Cases:

$n=0$:
$f(0)=2$
$3 * 2^{0}+(-1)^{0+1}=3 * 1+(-1)^{1}=3+(-1)=2$.
$2=2$, so $P(0)$ holds.
$n=1$:
$f(1)=7$
$3 * 2^{1}+(-1)^{1+1}=3 * 2+(-1)^{2}=6+1=7$
$7=7$, so $P(1)$ holds.
Inductive Hypothesis: Suppose that $P(j)$ holds for all $0 \leq j \leq k$ for some arbitrary integer k. Inductive Step:

$$
\text { Goal: Show } P(k+1) \text {, i.e. show } f(k+1)=3 * 2^{k+1}+(-1)^{(k+1)+1}
$$

$$
\begin{array}{rlr}
f(k+1) & =f((k+1)-1)+2 f((k+1)-2) & \text { def. of } f \\
& =f(k)+2 f(k-1) \\
& =3 * 2^{k}+(-1)^{k+1}+2\left(3 * 2^{k-1}+(-1)^{(k-1)+1}\right) & \\
& =3 * 2^{k}+(-1)^{k+1}+2\left(3 * 2^{k-1}+(-1)^{k}\right) \\
& =3 * 2^{k}+(-1)^{k+1}+3 * 2^{k}+2(-1)^{k} \\
& =2 * 3 * 2^{k}+(-1)^{k+1}+2(-1)^{k} \\
& =3 * 2^{k+1}+(-1)^{k+1}+2(-1)^{k} & \\
& =3 * 2^{k+1}+(-1)(-1)(-1)^{k+1}+2(-1)(-1)(-1)^{k} & (-1)(-1)=1 \\
& =3 * 2^{k+1}-(-1)^{k+2}+2(-1)^{k+2} \\
& =3 * 2^{k+1}+(-1)^{(k+1)+1}
\end{array}
$$

Thus, $P(k+1)$ holds.
We conclude that $P(n)$ holds for all $n \geq 0$ by strong induction.

5. Induction II (15 points)

Let the set S be recursively defined as follows:
Basis: $(0,0) \in S$
Recursive Step: If $(x, y) \in S$, then $(x+2, y+4) \in S$ and $(x+4, y+8) \in S$.
Prove that for all $(x, y) \in S, x+y$ is divisible by 3 .

Solution:

Define $P((x, y))$ to be the claim $3 \mid(x+y)$. We will prove that $P((x, y))$ holds for all $(x, y) \in S$ by structural induction.
Base Case: $(x, y)=(0,0)$
$0+0=0=3 * 0$. So, $3 \mid(x+y)$ and $P((0,0))$ holds.
Inductive Hypothesis: Suppose that $P((a, b))$ holds for some arbitrary $(a, b) \in S$. (i.e. $3 \mid(a+b)$).

Inductive Step:

$$
\text { Goal: Show } P((a+2, b+4)) \text { and } P((a+4, b+8))
$$

By the inductive hypothesis, $3 \mid(a+b)$. By definition of divides, $3 k=a+b$ for some integer k.

$$
(a+2)+(b+4)=a+b+6=3 k+6=3(k+2)
$$

So, $3 \mid((a+2)+(b+4))$ which means $P((a+2, b+4))$ holds.

$$
(a+4)+(b+8)=a+b+12=3 k+12=3(k+4)
$$

So, $3 \mid((a+4)+(b+8))$ which means $P((a+4, b+8))$ holds.
Thus, $P((x, y))$ holds for all $(x, y) \in S$ by the principle of structural induction.

6. Sets (20 points)

(a) [12 points] Prove using the Meta Theorem that for any sets A and B,

$$
A \backslash \bar{B}=(A \cup \varnothing) \cap B
$$

Hint 1: The empty set, \varnothing, is the set that contains no elements. i.e. $\varnothing::=\{x: F\}$.
Hint 2: If you get stuck, try working backwards!

Solution:

The claim is equivalent to $\forall x(x \in(A \backslash \bar{B}) \leftrightarrow x \in((A \cup \varnothing) \cap B))$. Let x be arbitrary.

$$
\begin{array}{rlr}
x \in(A \backslash \bar{B}) & \equiv x \in A \wedge \neg(x \in \bar{B}) & \text { Def of set difference } \\
& \equiv x \in A \wedge \neg \neg(x \in B) & \text { Def of complement } \\
& \equiv x \in A \wedge x \in B & \text { Double Negation } \\
& \equiv(x \in A \vee F) \wedge x \in B & \text { Identity } \\
& \equiv(x \in A \vee x \in \varnothing) \wedge x \in B & \text { Def of } \varnothing \\
& \equiv x \in(A \cup \varnothing) \wedge x \in B & \text { Def of union } \\
& \equiv x \in(A \cup \varnothing) \cap B &
\end{array}
$$

Since x was arbitrary, we have shown that these sets contain the same elements and are therefore equal.
Let $A=\{\{1\},\{1,2,3\}\}$ and $B=\{\{1,2\},\{2,3\},\{1,2,3\}\}$.
(b) [4 points] What is $A \cup B$?

Solution:

$A \cup B=\{\{1\},\{1,2\},\{2,3\},\{1,2,3\}\}$
(c) [4 points] What is $A \backslash B$?

Solution:

$A \backslash B=\{\{1\}\}$

7. Irregularity (15 points)

Prove that the language $L=\left\{10^{x} 10^{x+1} 1: x \geq 0\right\}$ is not regular.

Solution:

Suppose for the sake of contradiction there exists a DFA D that accepts L.
Let $S=\left\{10^{n} 1: n \geq 0\right\}$. Since S contains infinitely number strings and D has a finite number of states, two strings in S must end up in the same state of D. Say those strings are $10^{i} 1$ and $10^{j} 1$ for some $i, j \geq 0$ where $i \neq j$. Now, append $0^{i+1} 1$ to both strings. The resulting strings are:
$x=10^{i} 10^{i+1} 1$. Note that $x \in L$.
$y=10^{j} 10^{i+1} 1$. Note that $y \notin L$ since $i \neq j, j+1 \neq i+1$.
Both x and y must end up at the same state, but since $x \in L$ and $y \notin L$, that state must be both an accept state and a reject state. This is a contradiction, which means there does not exist a DFA D which accepts L. This means L is not regular.

