CSE 390Z: Mathematics for Computation Workshop

Practice 311 Final Solutions

Name:			
UW ID:			

Instructions:

- This is a **simulated practice final**. You will **not** be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 7 problems on this exam, totaling 120 points.

1. Language Representation (18 points)

Let the language L consist of all binary strings that do not contain 111.

(a) [5 points] Write a regular expression that represents L.

Solution:

$$(0 \cup 10 \cup 110)^* (1 \cup 11 \cup \epsilon)$$

(b) [5 points] Write a CFG that generates all strings in L.

Solution:

$$\textbf{S} \rightarrow \textbf{XY}$$

$$\mathbf{X} \rightarrow 0\mathbf{X} \mid 10\mathbf{X} \mid 110\mathbf{X} \mid \epsilon$$

$$\mathbf{Y} \rightarrow 1 \mid 11 \mid \epsilon$$

(c) [5 points] Draw a DFA that accepts exactly the strings in L.

Solution:

(d) [3 points] Convert the following regular expression to a CFG:

$$10(0^* \cup 1^*)01$$

$$\textbf{S} \rightarrow 10\textbf{X}01 \mid 10\textbf{Y}01$$

$$\mathbf{X} \rightarrow 0\mathbf{X} \mid \epsilon$$

$$\mathbf{Y} \rightarrow 1\mathbf{Y} \mid \epsilon$$

2. FSMs (20 points)

(a) [10 points] The following DFA accepts all binary strings that do not end in 0.

The following DFA accepts all binary strings that contain at least two 1s.

Draw a DFA that accepts all binary strings that do not end in 0 AND contain at least two 1s.

(b) [10 points] Convert the following NFA into a DFA.

3. Relations (17 points)

- (a) [7 points] Let the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ be defined as $\{(x,y): 4|(x+y)\}$. List 3 elements of R.
 - •
 - •
 - •

Solution:

- **(**0,0)
- **4**(4,0)
- **(**2,2)

List the properties that R has out of the following: reflexive, transitive, symmetric, antisymmetric. If R has a property, simply say so without further explanation. If R does not have a property, provide a counterexample without explaining further.

Solution:

Reflexive: No. (1,1) is not in R.

Transitive: No. (3,1) and (1,3) are in R, but (3,3) is not.

Symmetric: Yes.

Antisymmetric: No. (3,1) and (1,3) are both in R.

(b) [10 points] Let R and S be symmetric relations on a set A. Prove that $R \setminus S$ is symmetric using an *English proof*.

Solution:

Let a,b be arbitrary and suppose $(a,b) \in R \setminus S$. By definition of set difference, $(a,b) \in R$ and $(a,b) \notin S$. Since R is symmetric, $(b,a) \in R$. By taking the contrapositive of the definition of symmetric, we see that if an element $(x,y) \notin S$, then $(y,x) \notin S$ for any x,y. So, $(b,a) \notin S$. By definition of set difference, $(b,a) \in R \setminus S$. Since a,b were arbitrary, we have shown that $R \setminus S$ is symmetric.

4. Induction I (15 points)

Let the function $f: \mathbb{N} \to \mathbb{N}$ be defined as follows:

$$f(0)=2$$

$$f(1)=7$$

$$f(n)=f(n-1)+2f(n-2) \text{ for } n\geq 2$$
 Prove that $f(n)=3*2^n+(-1)^{n+1}$ for all integers $n\geq 0$ using strong induction.

Solution:

Let P(n) be " $f(n) = 3 * 2^n + (-1)^{n+1}$. We will prove P(n) holds for all $n \ge 0$ by strong induction.

Base Cases:

$$\begin{array}{l} n=0:\\ f(0)=2\\ 3*2^0+(-1)^{0+1}=3*1+(-1)^1=3+(-1)=2.\\ 2=2,\ \text{so}\ P(0)\ \text{holds}.\\ \\ n=1:\\ f(1)=7\\ 3*2^1+(-1)^{1+1}=3*2+(-1)^2=6+1=7\\ 7=7,\ \text{so}\ P(1)\ \text{holds}. \end{array}$$

Inductive Hypothesis: Suppose that P(j) holds for all $0 \le j \le k$ for some arbitrary integer k. **Inductive Step:**

Goal: Show
$$P(k+1)$$
, i.e. show $f(k+1) = 3 * 2^{k+1} + (-1)^{(k+1)+1}$

$$\begin{split} f(k+1) &= f((k+1)-1) + 2f((k+1)-2) \\ &= f(k) + 2f(k-1) \\ &= 3 * 2^k + (-1)^{k+1} + 2(3 * 2^{k-1} + (-1)^{(k-1)+1}) \\ &= 3 * 2^k + (-1)^{k+1} + 2(3 * 2^{k-1} + (-1)^k) \\ &= 3 * 2^k + (-1)^{k+1} + 3 * 2^k + 2(-1)^k \\ &= 2 * 3 * 2^k + (-1)^{k+1} + 2(-1)^k \\ &= 2 * 3 * 2^k + (-1)^{k+1} + 2(-1)^k \\ &= 3 * 2^{k+1} + (-1)^{k+1} + 2(-1)^k \\ &= 3 * 2^{k+1} + (-1)^{(-1)(-1)^{k+1}} + 2(-1)(-1)(-1)^k \\ &= 3 * 2^{k+1} + (-1)^{(k+1)+1} \end{split} \tag{-1)(-1) = 1}$$

Thus, P(k+1) holds.

We conclude that P(n) holds for all $n \ge 0$ by strong induction.

5. Induction II (15 points)

Let the set S be recursively defined as follows:

Basis: $(0,0) \in S$

Recursive Step: If $(x,y) \in S$, then $(x+2,y+4) \in S$ and $(x+4,y+8) \in S$.

Prove that for all $(x, y) \in S$, x + y is divisible by 3.

Solution:

Define P((x,y)) to be the claim $3 \mid (x+y)$. We will prove that P((x,y)) holds for all $(x,y) \in S$ by structural induction.

Base Case: (x,y) = (0,0)0+0=0=3*0. So, 3|(x+y) and P((0,0)) holds.

Inductive Hypothesis: Suppose that P((a,b)) holds for some arbitrary $(a,b) \in S$. (i.e. 3|(a+b)).

Inductive Step:

Goal: Show
$$P((a+2,b+4))$$
 and $P((a+4,b+8))$

By the inductive hypothesis, $3 \mid (a+b)$. By definition of divides, 3k = a+b for some integer k.

$$(a+2) + (b+4) = a+b+6 = 3k+6 = 3(k+2)$$

So, $3 \mid ((a+2) + (b+4))$ which means P((a+2, b+4)) holds.

$$(a+4) + (b+8) = a+b+12 = 3k+12 = 3(k+4)$$

So, $3 \mid ((a+4)+(b+8))$ which means P((a+4,b+8)) holds.

Thus, P((x,y)) holds for all $(x,y) \in S$ by the principle of structural induction.

6. Sets (20 points)

(a) [12 points] Prove using the Meta Theorem that for any sets A and B,

$$A \setminus \overline{B} = (A \cup \varnothing) \cap B$$

Hint 1: The empty set, \varnothing , is the set that contains no elements. i.e. $\varnothing ::= \{x : F\}$.

Hint 2: If you get stuck, try working backwards!

Solution:

The claim is equivalent to $\forall x(x\in (A\setminus \overline{B})\leftrightarrow x\in ((A\cup\varnothing)\cap B)).$ Let x be arbitrary.

$$x \in (A \setminus \overline{B}) \equiv x \in A \land \neg (x \in \overline{B})$$
 Def of set difference
$$\equiv x \in A \land \neg \neg (x \in B)$$
 Def of complement
$$\equiv x \in A \land x \in B$$
 Double Negation
$$\equiv (x \in A \lor F) \land x \in B$$
 Identity
$$\equiv (x \in A \lor x \in \emptyset) \land x \in B$$
 Def of \emptyset Def of union
$$\equiv x \in (A \cup \emptyset) \land x \in B$$
 Def of intersection

Since x was arbitrary, we have shown that these sets contain the same elements and are therefore equal.

Let
$$A = \{\{1\}, \{1, 2, 3\}\}$$
 and $B = \{\{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}.$

(b) [4 points] What is $A \cup B$?

Solution:

$$A \cup B = \{\{1\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}\$$

(c) [4 points] What is $A \setminus B$?

$$A \setminus B = \{\{1\}\}\$$

7. Irregularity (15 points)

Prove that the language $L = \{10^x 10^{x+1} 1 : x \ge 0\}$ is not regular.

Solution:

Suppose for the sake of contradiction there exists a DFA ${\cal D}$ that accepts ${\cal L}.$

Let $S = \{10^n1 : n \ge 0\}$. Since S contains infinitely number strings and D has a finite number of states, two strings in S must end up in the same state of D. Say those strings are 10^i1 and 10^j1 for some $i, j \ge 0$ where $i \ne j$. Now, append $0^{i+1}1$ to both strings. The resulting strings are:

```
x=10^i10^{i+1}1. Note that x\in L. y=10^j10^{i+1}1. Note that y\notin L since i\neq j, j+1\neq i+1.
```

Both x and y must end up at the same state, but since $x \in L$ and $y \notin L$, that state must be both an accept state and a reject state. This is a contradiction, which means there does not exist a DFA D which accepts L. This means L is not regular.